

DEPARTMENT OF BIOINFORMATICS M.Sc., Bioinformatics

REGULATIONS AND SYLLABUS [For the candidates admitted from the Academic Year 2022 – 2023 onwards]

ALAGAPPA UNIVERSITY (A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle andGraded as Category-I University by MHRD-UGC) Karaikudi -630003, Tamil Nadu.

Panel of Members-Broad Based Board of Studies

<u>Chairperson:</u>

Dr. J. Jeyakanthan, Professor and Head, Department of Bioinformatics, Alagappa University, Karaikudi. **Professional Experience: Teaching** - 14 years; **Research** - 28 years. **Area of Research:** Structural Biology, Computer-Aided Drug Design, and Bio-Computing

Foreign Experts

Prof. Chun-Jung Chen, Life Science Group, Scientific Research Division National Synchrotron Radiation Research Center. Email: cjchen@nsrrc.org.tw. **Professional Experience:** 22 Years: **Research** – 25 years. **Area of Research:** Synchrotron X-ray protein crystallography to molecular biophysics, structural biology and biochemistry.

<u>Indian Expert – I:</u>

Prof. K. Sekar, Professor Laboratory for Structural Biology and Bio-computing, Department of Computational and Data Sciences Indian Institute of Science Bangalore. Email: sekar@iisc.ac.in. **Professional experience: Teaching** - 20 Years; **Research:** 20 years. **Area of Research:** Protein Crystallography, Algorithm Development, Structural Bioinformatics, Crystallographic Computing, Internet Computing, Development of value added knowledgebases.

Indian Expert – II:

Prof. Dr. K. Premkumar, Professor and Head, Department of Biomedical Sciences, Bharadidasan University, Trichirappali. Email: <u>premslab@gmail.com</u>. **Professional Experience:** Teaching - 18 years; Research - 18 years. Area of research: Cancer Biology, Genomic Instability and Nanotheranostics

Member:

Dr. Sanjeev Kumar Singh, Department of Bioinformatics, Alagappa University, Karaikudi. **Professional Experience:** Teaching – 20 years; Research – 20 years. **Area of Research:** Structural bioinformatics and computer aided drug designing.

Member:

Dr. M. Kathikeyan, Assistant Professor, Department of Bioinformatics, Alagappa University, Karaikudi. **Professional Experience:** Teaching - 15 years, Research - 23 years;. **Area of Research:** Pharmacogenomics and Computational Biology. He concentrates on hypertension, diabetes, cardiovascular diseases, renal failure, cancer, snake bite, Neurological Disorders

Member:

Dr.RM.Vidhyavathi, Assistant Professor, Department of Bioinformatics, Alagappa University, Karaikudi. **Professional Experience:** Teaching – 10, Research - 11 years, **Area of Research:** Datamining and Data Warehousing, Database Security, Bioinformatics, Networking Database Management System, Network Security, Information Security, Cloud Computing, Big Data Analysis and Computational Biology Machine Learning and Artificial Intelligent, Block Chain Technology

Member:

Dr. J. Joseph sahayarayan, Assistant Professor, Department of Bioinformatics, Alagappa University, Karaikudi **Professional Experience**: Teaching – 11, Research -13 years, **Area of Research**: Plant Bioinformatics - Network Pharmacology, Database Creation, Computer Aided Drug Designing and Next Generation Sequencing in plant system

Member: Dr. P. Boomi, Assistant Professor, Bioinformatics, Alagappa University, Karaikudi **Professional Experience:** Teaching – 8, Research - 8 years, **Area of Research**: Cheminformatics, Synthesis of selfAssembly Nanoparticles, Nano Drug Delivery and Coputer Aided Drug Designing

Alumni:

Dr. S. Rajamanikandan, Assistant Professor, Research and Development Sree Balaji Medical College and Hospital, Chennai. Professional Experience: Teaching -10; Research - 10 years. Area of Research: Computer Aided Drug Designing

DEPARTMENTOF BIOINFORMATICS ALAGAPPA UNIVERSITY, KARAIKUDI

REGULATIONS AND SYLLABUS-(CBCS-University Department) [For candidates admitted form the Academic year 2022 onwards]

Name of the Department	: Bioinformatics
Name of the Programme	: M.Sc., Bioinformatics
Duration of the Programme	: Full Time (Two Years)

Choice-Based Credit System

A choice-Based Credit System is a flexible system of learning. This system allows students to gain knowledge at their own tempo. Students shall decide on electives from a wide range of elective courses offered by the University Departments in consultation with the Department committee. Students undergo additional courses and acquire more than the required number of credits. They can also adopt an inter-disciplinary and intra-disciplinary approach to learning, and make the best use of the expertise of available faculty.

Programme

"Programme" means a course of study leading to the award of a degree in a discipline.

. 0

General Objectives of the Program

The general objective of the M.Sc program in Bioinformatics is to develop strongminded graduates with high-quality skills in the field of Structural Bioinformatics and Computer Aided Drug Design. The curriculum designed is to assist the students in understanding the vital concept of fundamentals involved in the structure determination through various Molecular Biology, Biochemical and Cell Biology experimental methods with practical hands-on training in the usage of Bioinformatics tools for Drug Discovery. At the end of the program, the student will gain in-depth knowledge in Bioinformatics and play an active role in biological research, government or non-government organization, and private sectors.

Courses

'Course' is a component (a paper) of a programme. Each course offered by the Department is identified by a unique course code. A course contains lectures/ tutorials/laboratory /seminar/project / practical training/report writing /Viva-voce, etc or a combination of these, to meet effectively the teaching and learning needs.

Credits

The term "Credit" refers to the weightage given to a course, usually in relation to the instructional hours assigned to it. Normally in each of the courses credits will be assigned on the basis of the number of lectures/tutorial/laboratory and other forms of learning required completing the course contents in a 15-week schedule. One credit is equal to one hour of lecture/tutorial per week. For laboratory/field work one credit is equal to two hours.

Semesters

An Academic year is divided into two Semesters. In each semester, courses are offered in 15 teaching weeks and the remaining 5 weeks are to be utilized for conduct of examination and evaluation purposes. Each week has 30 working hours spread over 5 days a week.

Medium of Instruction

The medium of instruction is English only.

Departmental Committee

The Departmental Committee consists of the faculty of the Department. The Departmental Committee shall be responsible for admission to all the programmes offered by the Department including the conduct of entrance tests, verification of records, admission, and evaluation. The Departmental Committee determines the deliberation of courses and specifies the allocation of credits semester-wise and course- wise. For each course, it will also identify the number of credits for lectures, tutorials, practical's, seminars etc. The courses (Core/Discipline Specific Elective/Non-Major Elective) are designed by teachers and approved by the Departmental Committees. Courses approved by the Departmental Committees shall be approved by the Board of Studies/Broad Based Board of Studies. A teacher offering a course will also be responsible for maintaining attendance and performance

sheets (CIA -I, CIA-II, assignments and seminar) of all the students registered for the course. The Non-major elective programme, MOOCs coordinator and Internship Mentor are responsible for submitting the performance sheet to the Head of the department. The Head of the Department consolidates all such performance sheets of courses pertaining to the programmes offered by the department. Then forward the same to be Controller of Examinations.

PEO-1	To train the students in various Molecular Biology experimental methods that aids the students to perform related Structural Biology techniques (Cloning, Expression, Purification & Crystallization) to isolate the protein of interest skillfully through laboratory practical.		
PEO-2	To emphasize on the flexibility of the state of the art technologies available especially in the area of Computer Aided Drug Design (CADD) and projved hands-on training in		
	both computer and experimental lab.		
PEO-3	To offer summer internship lab training, providing in-depth knowledge in interdisciplinary areas and how to use computational tools and techniques to analyze and interpret biological data, including DNA sequences and protein structures.		
PEO-4	To address the challenges arising from the huge amount of genomic data and to overcome by analyzing and individualizing the corresponding drug responses towards appropriate drug specified dosages.		
PEO-5	To provide a sound introduction to the discipline of database management as a subject in its own right, rather than as a compendium of techniques and product specific tools.		
PEO-6	To build in candidates a strong foundation in interdisciplinary sciences for productive careers in bioinformatics, computer science, chemistry, and biophysics, integrating biology, mathematics, and data analysis to solve complex problems in life science solutions.		
PEO-7	To offer a sustainable, skill-based value added course that fosters scientific thinking and enhances professional capabilities to equip students with the skills necessary for a competitive advantage in their careers, promoting a spirit of innovation and critical analysis.		

Programme Educational Objectives (PEOs)

PEO-8	To create user-friendly tools and databases with the help of programming languages	
	and algorithms.	
PEO-9	To establish an advanced research facility focused on bioinformatics, biotechnology,	
	and molecular modeling to foster interdisciplinary collaboration, attract top talent, and	
	leverage cutting-edge technologies to address complex scientific challenges.	
PEO-10	To conduct journal clubs in a month/ annual national conference/ weekly career	
	guidance(s) that would help them knowabout the recent advances in the subject and also	
	develop their knowledge accordingly.	

Programme Specific Objectives-(PSO)

PSO-1	To find out the methods for analyzing the expression, structure and function of DNA, RNA and proteins, and an understanding of the relationships between species.
PSO-2	To identify and define different types of biomolecules and the important structural features of biomolecules.
PSO-3	To provide basic genetic terminology at a general level and describe the organization and development of the genetic makeup on cellular, chromosomal and gene level and be able to explain the basic molecular genetics mechanisms in relation to the structure and function of the cells.
PSO-4	To introduce basic techniques and programming skills in bio statistical approach, thereby presents a suitable opportunity for the students to represent their data in various interpretations.
PSO-5	To provide advanced computational skills to analyze biological data, fostering an understanding of the intersection between biology and informatics using various computational tools and software.

Programme Outcome-(PO)

ramme C	Outcome-(PO)
Knowle	dge:
PO1	Comprehending the principles of Bioinformatics disciplines, along with the significance of
	Biological database, theories, technologies and scientific discoveries.
PO2	Working with confidence and conscience on the fundamentals of Biological problem and to
	study how biological data is retrieved from databases.
PO3	Enriching student's knowledge in various fields of Bioinformatics such as Molecular Cell
	Biology, Mathematics and Statistics for Biologists, Molecular Modeling and Drug Design,
	Computational Biology, Computer Science, Genetic Engineering, Structural Biology and
	Chemistry etc.
PO4	Understanding and appreciating the significance of Chemical informatics and
	Pharmacoinformatics applications in drug discovery, as well as how to deal with future
	difficulties and national interests.
Skills:	
PO5	Exhibiting diverse Bioinformatics talents, such as sequence alignment, structure database,
	and drug development, for recent health sciences challenges using new computational
	tools/software/database.
PO6	Acquiring the skills required for effective communication in academic and research settings.
PO7	Identifying the suitable leads against disease-causing targets gives a regimen for drug
	research and development.
PO8	Developing the skills in writing research articles, scientific proposal writing, giving a
	scientific presentation, reviewing a scientific paper, research ethics, and applying learned
	skills in the techniques within the chosen area of study.

Attitude	2.
PO9	Identifying significant problems in society and the environment, as well as stimulating future
	work, by doing socially responsible research in the field of medicinal discovery.
PO10	Developing relationships between the community and industry in order to enhance services
	to the society.

Program Specific Outcomes (PSOs)

Knowled	lge:		
PSO1	The students can acquire knowledge in both theoretical and experimental		
	domains for drug discovery through computational biological sciences.		
Skills:			
PSO2	The student can develop various computational methods and related software		
	to solve existing and emerging challenges, and provide lab training on how		
	to manage acquired biological data.		
PSO3	Providing skill-based projects to the student in multidisciplinary area to		
	solve thecurrent problem in drug discovery process.		
Attitude:			
PSO4	Provide global research possibilities for advanced studies and scientific		
	career.		
PSO5	Demonstrate subject matter through technical writing and oral presentation.		

Eligibility for Admission

Candidates for admission to Master of Science in Bioinformatics shall be required to have passed B.Sc., (Bioinformatics/ Biotechnology/ Microbiology/ Biochemistry/ Botany/ Zoology/ Mathematics/ Physics/ Chemistry /Information Technology/ Computer Science)/ B.Sc.(Agri.)/B.V.Sc.,/B.Pharm.,/B.Tech.,(Biotech/Bioinformatics/Life Sciences)/MBBS or any other course equivalent thereto and must have obtained 55% marks at graduation level.

Minimum Duration of Programme

The programme is for a period of two years. Each year shall consist of two semesters viz. Odd and Even semesters. Odd semesters shall be from June / July to October / November and even semesters shall be from November / December to April / May. Each semester there shall be 90 working days consisting of 6 teaching hours per working day (5 days/week).

Components

M.Sc Bioinformatics programme consists of a number of courses. The term "course" is applied to indicate a logical part of the subject matter of the programme and is invariably equivalent to the subject matter of a "paper" in the conventional sense. The following are the various categories of the courses suggested;

A. Core courses (CC)- "Core Papers" means "the core courses" related to the programme concerned including practicals and project work offered under the programme and shall cover core competency, critical thinking, analytical reasoning, and research skill. for the PG programmes:

B. Discipline-Specific Electives (DSE) means the courses offered under the programme related to the major but are to be selected by the students, shall cover additional academic knowledge, critical thinking, and analytical reasoning. C. Non-Major Electives (NME)-Exposure beyond the discipline.

- □ PG students have to undergo a total of two Non Major Elective courses with 2 credits offered by other departments (one in II Semester another in III Semester).
- □ A uniform time frame of 3 hours on a common day (Tuesday) shall be allocated for the Non-Major Electives.
- □ Non Major Elective courses offered by the departments pertaining to a semester should be announced before the end of previous semester.
- Registration process: Students have to register for the Non-Major Elective course within 15 days from the commencement of the semester either in the department or NME portal (University Website).

D. Self Learning Courses from MOOCs platforms.

- MOOCs shall be on voluntary for the students.
- PG students have to undergo a total of 2 Self Learning Courses (MOOCs) one in II semester and another in III semester.
- The actual credits earned through MOOCs shall be transferred to the credit plan of programmes as extra credits. Otherwise 2 credits/course be given if the Self Learning Course (MOOCs) is without credit.
- While selecting the MOOCs, preference shall be given to the course related to employability skills.

E. Projects / Dissertation /Internships (Maximum Marks: 200)

The student shall undertake the dissertation work during the fourth semester.

Plan of work

Project/Dissertation

The candidate shall undergo Project/Dissertation Work during the final semester. The candidate should prepare a scheme of work for the dissertation/project and should get approval from the guide. The candidate, after completing the dissertation /project work, shall be allowed to submit it to the university departments at the end of the final semester. If the candidate is desirous of availing the facility from other departments/ universities/ laboratories/organizations they will be permitted only after getting approval from the guide and HOD. In such a case, the candidate shall acknowledge the same in their dissertation/project work.

□ Format to be followed for dissertation/project report.

The format /certificate for thesis to be followed by the student are given below;

- ≻ Title page
- ➤ Certificate
- > Acknowledgment
- ≻ Content as follows:

Chapter No	Title	Page number
1	Introduction	
2	Aim and Objectives	
3	Review of literature	
4	Materials and Method	
5	Result	
6	Discussion	
7	Summary	
8	References	

Format of the title page

Title of Dissertation/Project work

Dissertation/Project submitted in partial fulfillment of the requirement for the degree of Master of Science to the Alagappa University, Karaikudi -630003.

By (Student Name) (Register Number)

Department of Bioinformatics Alagappa University (A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third

Cycle and Graded as Category-I University by MOE-UGC, 2019: MOE-NIRF-28,QS ASIA Rank-220 & THE-500-600) Karaikudi - 630003

(Year)

Format of certificates

Certificate -Guide

This is to certify that the **Dissertation/Project entitled** "-----

" submitted to Alagappa University, Karaikudi-630 003 in partial fulfilment for the degree of Master of Science in Bioinformatics by Mr/Mis ------(Reg No:------ under my supervision. This is based on the results of studies carried out by him/her in the Department of Bioinformatics, Alagappa University, Karaikudi-630 003. This dissertation/Project or any part of this work has not been submitted elsewhere for any other degree, diploma, fellowship, or any other similar titles or record of any University or Institution.

Place: Karaikudi

Research Supervisor

Date:

Certificate - (HOD)

This is to certify that the thesis entitled "------" submitted by Mr/Mis ------" (Reg No: -----) to the Alagappa University, in partial fulfilment for the award of the degree of Master of Science in Bioinformatics is a bonafide record of research work done under the supervision of Dr

Assistant Professor, Department of Bioinformatics Alagappa University. This is to further certify that the thesis or any part thereof has not formed the basis of the award to the student of any degree, diploma, fellowship, or any other similar title of anyUniversity or Institution. Place: Karaikudi Head of the Department

Date:

Declaration (Student)

I hereby declare that the dissertation entitled "------- " submitted to the Alagappa University for the award of the degree of Master of Science in Bioinformatics has been carried out by me under the guidance of Dr.------, Assistant Professor, Department of Bioinformatics Alagappa University, Karaikudi – 630 03. This is my original and independent work and has not previously formed the basis of the award of any degree, diploma, associateship, fellowship, or any other similar title of any University or Institution.

Place: Karaikudi

Date:

Internship

The students who have opted for an Internship must undergo industrial training in the reputed organizations to accrue industrial knowledge in the final semester. The student has to find industry related to their discipline (Public limited/Private Limited/owner/NGOs etc.,) in consultation with the faculty in charge/Mentor and get approval from the head of the department and Departmental Committee before going for an internship.

Format to be followed for Internship report

The format /certificate for internship report to be followed by the student are given Below;

(-----)

> Title page -Format of the title page

Title of internship report

Internship report submitted in partial fulfilment of the requirement for the Master of degree in Bioinformatics to the Alagappa University, Karaikudi -630003.

By

(Student Name)

(Register Number)

Department of Bioinformatics

Alagappa University

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third

Cycle and Graded as Category-I University by MOE-UGC, 2019: MOE-NIRF-28,

QS ASIA Rank-220 & THE-500-600)

Karaikudi - 630003

(Year)

Certificate-(Format of certificate – faculty in-charge)

This is to certify that the report entitled "------" submitted to Alagappa University, Karaikudi-630 003 in partial fulfilment for the Master of Science in Bioinformatics by Mr/Mis----- (Reg No------) under my supervision. This is based on the work carried out by him/her in the organization M/S ------. This Internship report or any part of this work has not been submitted elsewhere for any other degree, diploma, fellowship, or any other similar record of any University or Institution.

Place:

Research Supervisor

Date:

Certificate (HOD)

This is to certify that the Internship report entitled "------" submitted by Mr/Mis.--------(**Reg No**:------) to the Alagappa University, in partial fulfilment for the award of the Master of Science in Bioinformatics is a bonafide record of Internship report done under the supervision of ------, Assistant Professor, Department of Bioinformatics Alagappa University and the work carried out by him/herin the organization M/S ---. This is to further certify that the thesis or any part thereof has not formed the basis of the award to the student of any degree, diploma, fellowship, or any other similar title of any University or Institution.

Place: Karaikudi

Head of the Department

Date:

Certificate-(Format of certificate – Company supervisor or Head of the Organization)

This is to certify that the Internship report entitled "------" submitted to Alagappa University, Karaikudi-630 003 in partial fulfilment for the Master of Science in Bioinformatics by Mr/Mis------ (**Reg No**:-----) under my supervision. This is based on the work carried out by him/her in our organization M/S -

----- for the period of three months or ---. This Internship report or any part of this work has not been submitted elsewhere for any other degree, diploma, fellowship, or any other similar record of any University or Institution.

Place:

Supervisor or in charge

Date:

Declaration (Student)

------ for the period of three months or and has not previously formed the basis of the award of any degree, diploma, associateship, fellowship, or any other similar title of any University or Institution.

Place: Karaikudi

(-----)

Date:

> Acknowledgment

Content as follows:

Chapter No	Title	Page number
1	Introduction	
2	Aim and Objectives	
3	Organisation profile /details	
4	Methods and Work	
5	Observation and knowledge gained	
6	Summary and outcome of the	
	Internship study	
7	References	

No. of copies of the dissertation/project report/internship report. The candidate should prepare three copies of the dissertation/project/report and submit the same for the evaluation of examiners. After evaluation, one copy will be retained in the department library, one copy will be retained by the guide and the student shall hold one copy.

Teaching Methods

The mode of teaching is based on the following learning activities:

- Lectures covering the theoretical part will be delivered using PowerPoint presentations.
- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Video-conferencing for lectures that will be sought overseas reputed institutions
- A set of laboratory exercises to analyze biological problems using softwares and tools to develop student's interests in scientific discovery.
- Case studies and Review questions.

Attendance

Students must have earned 75% of attendance in each course for appearing for the examination. Students who have earned 74% to 70% of attendance need to apply for condonation in the prescribed form with the prescribed fee. Students who have earned 69% to 60% of attendance need to apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students who have below 60% of attendance are not eligible to appear for the End Semester Examination (ESE). They shall redo the semester(s) after completion of the programme.

Examination

The examinations shall be conducted separately for theory and practical's to assess (remembering, understanding, applying, analysing, evaluating, and creating) the knowledge required during the study. There shall be two systems of examinations viz., internal and external examinations. The internal examinations shall be conducted as Continuous Internal Assessment tests I and II (CIA Test I & II).

A. Internal Assessment

The internal assessment shall comprise a maximum of 25 marks for each subject. The following procedure shall be followed for awarding internal marks. Theory -25 marks

Syllabus Coverage for First CIA – First Two Units and for Second CIA – Remaining Three Units

Question paper Pattern

Part A	10 objective type questions (each carrying one mark)	10 x 1 = 10 Marks
Part B	5 descriptive type questions (either or each carrying 5 Marks)	5 x 5 = 25 Marks
Part C	5 descriptive type questions (eitheror each carrying 8 marks)	5 x 8 = 40 Marks
	Total	75 Marks

Total CIA Marks = 25 Marks.

Total Marks = 75-Average of Two tests marks to be rounded off to maximum of 15marks.

Assignment – Minimum one Assignment covering first two units and Minimum oneAssignment Covering next three units and Total Marks to be awarded is 5 Marks.

Seminar – Minimum 1 Seminar covering entire course content and to be awarded to maximum of 5 marks.

Sl.No	Content	Marks
1	Average marks of two CIA test	15
2	Assignment/field trip report/case study report	5
3	Seminar/group discussion/quiz	5
Total		25

Practical-25 Marks

Sl.No	Content	Marks
1	Major Experiment	10
2	Minor Experiment	5
3	Spotter $(2x 5/4 x4)$ or any other mode	10
Total		25

Project/Dissertation/internship-50 Marks (assess by Guide/incharge/HOD/supervisor)

Sl.No	Content	Marks
1	Two presentations (mid-term)	30
2	Progress report	20
Total		50

B. External Examination

- There shall be examinations at the end of each semester, for odd semesters in the month of October / November; for even semesters in April / May.
- A candidate who does not pass the examination in any course(s) may be permitted to appear in such failed course(s) in the subsequent examinations tobe held in October / November or April / May. However candidates who have arrears in Practical shall be permitted to take their arrear Practical examination only along with Regular Practical examination in the respective semester.
- A candidate should get registered for the first semester examination. If registration is not possible owing to shortage of attendance beyond condonation limit / regulation prescribed OR belated joining OR on medical grounds, the candidates are permitted to move to the next semester. Such candidates shall re- do the missed semester after completion of the programme.
- For the Project Report/ Dissertation Work / internship the maximum marks will be 100 marks for project report evaluation and for the Viva-Voce it is 50 marks (if in some programmes, if the project is equivalent to more than one course, the project marks would be in proportion to the number of equivalent courses).
- Viva-Voce: Each candidate shall be required to appear for Viva-Voce Examination(in defense of the Dissertation Work /Project/ internship).

Syllabus Coverage- All Five Units of the Course.

Scheme of External Examination (Question Paper Pattern)

	10 questions. All questions carry equal	$10 \mathbf{x} 1 = 10$	10 questions – 2 each
Section A	marks. (Objective type questions)	Marks	from every unit
	5 questions Either / or type like 1.a	$5 \times 5 = 25$	5 questions – 1 each
Section B	(or) b. All questions carry equal		from every unit
	marks.		
	5 questions Either / or type like 1.a	5 x8 = 40	5 question – Should
Section C	(or) b. All questions carry equal		cover all units
	marks.		

Theory - Maximum 75 Marks

Practical – Maximum 75 Marks

Section A	Major experiment	15 Marks
Section B	Minor experiment	10 Marks
Section C	Experimental setup	5 Marks
Section D	Spotters (5 x 5 marks)	25 Marks
Section E	Record note	10 Marks
Section F	Vivo voce	10 Marks
Total		75 Marks

Dissertation /Project report/Internship report Scheme of evaluation

Dissertation /Project report/Internship report	150 Marks
Viva Voce	50 Marks
Total	200 Marks

Results

The results of all the examinations will be published through the Department where the student underwent the course as well as through University Website

Passing Minimum

- A candidate shall be declared to have passed in each course if he/she secures not less than 40% marks in the End Semester Examinations and 40% marks in the Internal Assessment and not less than 50% in the aggregate, taking Continuous assessment and End Semester Examinations marks together.
- The candidates not obtained 50% in the Internal Assessment are permitted to improve their Internal Assessment marks in the subsequent semesters (2 chances will be given) by writing the CIA tests and by submitting assignments.
- Candidates, who have secured the pass marks in the End-Semester Examination and in the CIA but failed to secure the aggregate minimum pass mark (E.S.E + C I.A), are permitted to improve their Internal Assessment mark in the following semester and/or in University examinations.
- A candidate shall be declared to have passed in the Project / Dissertation /Internship if he /she gets not less than 40% in each of the Project / Dissertation /Internship Report and Viva-Voce and not less than 50% in the aggregate of both the marks for Project Report and Viva-Voce.
- A candidate who gets less than 50% in the Project / Dissertation / Internship Report must resubmit the thesis. Such candidates need to take again the Viva- Voce on the resubmitted Project report.

RANGE OF		LETTER GRADE	DESCRIPTION
MARKS	GRADE POINTS		
90 - 100	9.0 - 10.0	0	Outstanding
80 - 89	8.0 - 8.9	D+	Excellent
75 - 79	7.5 – 7.9	D	Distinction
70 - 74	7.0 – 7.4	A+	Very Good
60 - 69	6.0 - 6.9	Α	Good
50 - 59	5.0 - 5.9	В	Average
00 - 49	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

Grading of the Courses

The following table gives the marks, Grade points, Letter Grades and classifications meant to indicate the overall academic performance of the candidate. Conversion of Marks to Grade Points and Letter Grade (Performance in Paper / Course)

- a) Successful candidates passing the examinations and earning GPA between 9.0 and 10.0 and marks from 90 100 shall be declared to have Outstanding (O).
- b) Successful candidates passing the examinations and earning GPA between 8.0 and 8.9 and marks from 80 89 shall be declared to have Excellent (D+).
- c) Successful candidates passing the examinations and earning GPA between 7.5 7.9 and marks from 75 79 shall be declared to have Distinction (D).
- d) Successful candidates passing the examinations and earning GPA between 7.0 7.4 and marks from 70 74 shall be declared to have Very Good (A+).
- e) Successful candidates passing the examinations and earning GPA between 6.0 6.9 and marks from 60 69 shall be declared to have Good (A).
- f) Successful candidates passing the examinations and earning GPA between 5.0 5.9 and marks from 50 59 shall be declared to have Average (B).
- g) Candidates earning GPA between 0.0 and marks from 00 49 shall be declared to have Re-appear (U).
- h) Absence from an examination shall not be taken as an attempt.

From the second semester onwards the total performance within a semester and continuous performance starting from the first semester are indicated respectively by Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA). These two are calculated by the following formulate

GRADE POINT AVERAGE (GPA) = $\Box_i C_i G_i / \Box_i C_i$

GPA = <u>Sum of the multiplication of Grade Points by the credits of the courses</u> Sum of the credits of the courses in a Semester

Classification of the final result

CGP	Grade	Classification of Final Result
Α		9
9.5 - 10.0	0+	First Class – Exemplary*
9.0 and above b <mark>ut bel</mark> ow 9.5	0	
8.5 and above but below 9.0	D++	First Class with
8.0 and above but below 8.5	D+	Distinction*
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A++	First Class
6.5 and above but below 7.0	A+	
6.0 and above but below 6.5	Α	
5.5 and above but below 6.0	B+	Second Class
5.0 and above but below 5.5	B	
0.0 and above but below 5.0	U	Re-appear

The final result of the candidate shall be based only on the CGPA earned by the candidate.

- a) Successful candidates passing the examinations and earning CGPA between 9.5 and 10.0 shall be given Letter Grade (O+), those who earned CGPA between 9.0 and 9.4 shall be given Letter Grade (O) and declared to have First Class – Exemplary*.
- b) Successful candidates passing the examinations and earning CGPA between 7.5 and 7.9 shall be given Letter Grade (D), those who earned CGPA between 8.0 and 8.4 shall be given Letter Grade (D+), those who earned CGPA between 8.5 and 8.9 shall be given Letter Grade (D++) and declared to have First Class with Distinction*.

- c) Successful candidates passing the examinations and earning CGPA between 6.0 and 6.4 shall be given Letter Grade (A), those who earned CGPA between 6.5 and 6.9 shall be given Letter Grade (A+), those who earned CGPA between 7.0 and 7.4 shall be given Letter Grade (A++) and declared to have First Class.
- d) Successful candidates passing the examinations and earning CGPA between 5.0 and 5.4 shall be given Letter Grade (B), those who earned CGPA between 5.5 and 5.9 shall be given Letter Grade (B+) and declared to have passed in Second Class.
- i) Candidates those who earned CGPA between 0.0 and 4.9 shall be given Letter Grade (U) and declared to have Re-appear.
- e) Absence from an examination shall not be taken as an attempt.

CUMULATIVE GRADE POINT AVERAGE (CGPA) = $\Box_n \Box_i C_{ni} G_{ni} / \Box_n \Box_i C_{ni}$ CGPA = <u>Sum of the multiplication of Grade Points by the credits of the entire Programme</u> Sum of the credits of the courses for the entire Programme

Where 'Ci' is the Credit earned for Course i in any semester; 'Gi' is the Grade Point obtained by the student for Course i and 'n' refers to the semester in which such courses were credited.

CGPA (Cumulative Grade Point Average) = Average Grade Point of all the Courses passed starting from the first semester to the current semester.

Note: * The candidates who have passed in the first appearance and within the prescribed Semesters of the PG Programme are alone eligible for this classification.

Conferment of the Master's Degree

A candidate shall be eligible for the conferment of the Degree only after he/ she has earned the minimum required credits for the Programme prescribed therefor (i.e. 90 credits). Programme).

Village Extension Programme

The Sivaganga and Ramnad districts are very backward districts where a majority of people Lives in poverty. The rural mass is economically and educationally backward. Thus, the aim of the introduction of this Village Extension Programme is to extend out to reach environmental awareness, social activities, hygiene, and health to the rural people of this region. The students in their third semester have to visit any one of the adopted villages within the jurisdiction of Alagappa University and can arrange various programs to educate the rural mass in the following areas for three day based on the theme.

- 1. Environmental Awareness.
- 2. Hygiene and Health. A minimum of two faculty members can accompany the students and guide them.

S.No.	.No.PaperTitle of the PaperCode		T/P		Hrs/	1	Marks		
					Credit	Week	Ι	E	Total
SEMESTER-I					1				I
1	502101	Core I	Introduction to Bioinformatics	Т	5	5	25	75	100
2	502102	Core II	Molecular Cell Biology	Т	5	5	25	75	100
			andBiochemistry		-	-	_		
3	502103	Core III	Mathematics and Statistics for	Т	5	5	25	75	100
			Biologists	_					
4	502104	Core IV	Lab-I: DBMS and MYSQL	<u>Р</u>	4	8	25	75	100
5	502501	Elective I	DSC-1 Major Elective-I	Т	5	5	25	75	100
	Library					1			
	Yoga/ Jo	urnal Club/C	Career Guidance			1			
		1	Total		24	30	125	5 375	500
	I	1	SEMESTER-II						1
6	502201	Core V	Phylogeny and Phylogenomics	Т	4	4	25	75	100
7	502202	Core VI	Molecular Modeling and Drug Design	Т	5	5	25	75	100
8	502203	Core VII	Computational Biology	Т	5	5	25	75	100
	202203		Programming in Scripting	-			20	10	100
9	502204	Core VIII	Languages (PYTHON	Т	5	5	25	75	100
			PERL & R)	12				10	100
	502205	C IV	Lab-II: Molecular Biology	D	2	(25	75	100
	502205	CoreIX	and Biochemical Techniques	P	3	0	25	/5	100
11	11 Non Major Elective (NME) - I			Т	2	3	25	75	100
12	Self Lear	ning Course	(SLC) - I MOOC's	16	Extra	Credit			
	Library			0		1			
	Yoga/ Jo	urnal Club/C	Career Guidance			1			
	_]	Fotal		24	30	150	450	600
			SEMESTER-III				I		
13	502301	Core V	Genetics and Genetic	Т	5	5	25	75	100
15	502501	COLEY	Engineering			5	23	15	100
14	502302	Core XI	Structural Biology	Т	5	5	25	75	100
15	502303	Core XII	Pharmacogenomics	Т	4	5	25	75	100
16	502304	Core XIII	Lab-III: Computer Aided Drug	Р	4	5	25	75	100
10	202201	coreniii	Design (CADD)	1	•	2	20	10	100
17		DSE-1	Elective II	Т	4	5	25	75	100
18	18 Non Major Elective (NME) - II			Т	2	3	25	75	100
19	Self Lean	rning Course	(SLC) - II MOOC's		Extra	Credit			
	Library					1			
	Yoga/ Jo	ournal Club/C	Career Guidance			1			
Total				24	30	150	450	600	

M.Sc BIOINFORMATICS-PROGRAMME STRUCTURE

			SEMESTER-IV	T					
20	502401	Core XIV	Machine Learning and Artificial	Т	4	4	25	75	100
	002.01		Intelligence	-		•		, 0	100
21	502402	Core XV	Systems Biology	Т	4	4	25	75	100
			Lab-IV: Small and Macromolecula						
22	502403	Core XVI	Crystallography	Р	4	8	25	75	100
23	502999	Core XVII	Project Work & Viva-Voce		6	12	50	150	200
	Library					1			
Yoga/ Journal Club/Career Guidance					1				
	Total				18	30	125	375	500
Grand Total (Semester I + II + III + IV)				90	120	500	1650	2200	

DSC- Department Students Choice, EC- Extra Credit; I-Internal Marks, E-External Marks, Th-Theory, Tu-Tutorial, Pr-Practical

Work Load

- \Box **1** Credit = 1 Theory period of one hour duration
- □ 1 Credit = 1 Tutorial period of one hour duration
- □ 1 Credit = 1 Practical period of two hour duration

Semester wise credit details:

Ι	Semester	24 Credits	Core Credits: 19; Major Elective Credits: 5
II	Semester	24 Credits + EC	Core Credits: 22; Non-Major Elective Credits: 2; Self Learning course credits – EC
III	Semester	24 credits+ EC	Core Credits: 18; Major Elective Credits: 4; Non-Major Elective: 2; Self Learning course credits – EC
IV	Semester	18 credits	Core Credits: 12; Project Work& Viva-Voce: 6
Tot	al credits	90+ EC	Core Credits: 71; Major Elective Credits: 9; Non- Major Elective Credits: 4; Project Work & Viva- Voce: 6 + Self Learning course credits - extra credits

Majo	Major Electivefor the Department of Bioinformatics			
S. No	Subject Code	Subject Name		
1.	502501	General Chemistry		
2.	502502	Fundamentals of Computing		
3.	502503	IPR, Bio-safety and Bioethics		
4.	502504	Biosensor		
5.	502505	Molecular Interactions		
6.	502506	Introduction to Neural Networks		
7.	502507	Data Warehousing and Data Mining		
8.	502508	Programming in C and C++		
9.	502509	Cell communication and Cell signaling		
10.	502510	Big data analysis and Next Generation Sequencing		
11.	502511	General Microbiology		
12.	502512	Open Source in Bioinformatics		
13.	502513	Biodiversity, Agriculture, Ecosystem, Environment and Medicine		
14.	502514	Nanotechnology and Advanced Drug Delivery System		
15.	502515	Immunology and Immunotechnology		

Non Major Electives for the other Departments

S. No	Subject Code	Subject Name
1.	502101	Introduction to Bioinformatics
2.	502202	Molecular Modeling and Drug Design
3.	502203	Computational Biology
4.	502204	Programming in Scripting Languages (PYTHON, PERL& R)
5.	502302	Structural Biology
6.	502303	Pharmacogenomics

Required Facilities For The Programme

I. Wet Lab Facility:

Basic minor instruments	FPLC - Protein Purification system
Thermocycler	Multi Plate Reader
-86°C Ultra Freezer	Nano Spectrophotometer
-20°C Deep Freezer	Kinetic Biospectrometer
Walk-in cold room storage	Upright Polaroid Microscope
Ultra Water Purification	Small Angle X-ray Scattering
Stackable Orbital Shaking Incubator	2-D Electrophoresis
Ultra centrifuge	Biacore
Ice flaks maker	Isothermal Titration Calorimetry
Ultra sonicator	Nano LC - MS/MS
Refrigerated centrifuges	Small and Macromolecule X-ray Diffractometer
Next Generation Sequencer	
II. Computational Lab: IBM Super computer	
High Performance Cluster Computers	
High Performance Workstations -50	
Desktop Computers – 50	
UPS power backup	
III. Softwares Schrodinger Software commercial packa	ge
Gromacs	
Amber	
Gaussian	

Cambridge Structural Database

SPSS Statistical Software

Program: M.Sc.,	Semester : I (2022 Onwards)
Course Title: Introduction to Bioinformatics Subject Code: 502101	Class Time: As per the time table
Name of Course Teachers	Dr. Sanjeev Kumar Singh
	Dr. P. Boomi
Mobile: +91 - 9894429800	E-mail: sksingh@alagappauniversity.ac.in
+91 - 9486031423	boomip@alagappauniversity.ac.in

SEMESTER-I *Course Depiction* Introduction to Bioinformatics

Course Brief:

The course depicts the fundamental concepts and methods in Bioinformatics, a field at the junction of Biology and Computing. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data. The course covers the principles and methods used to search and compare DNA, RNA and proteins, cast as biological "sequences". The course explains why they can give us answers to fundamental biological questions important to fields such as Cell Biology, Biochemistry and Medical science. The important public data banks that provide details of biological systems and components will be discussed. It reviews a wide range of topics including open resources in bioinformatics, computational sequence analysis, sequence homology searching, gene finding and genome annotation, protein structure analysis and prediction, genomics, proteomics, phylogenetic analysis, biological databases, cheminformatics and medical informatics. Protein structures are three-dimensional data and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. It serves a gateway course for all science students.

Teaching Methods: The mode of teaching is based on the following learning activities:

- Lectures covering the theoretical part will be delivered using PowerPoint presentations.
- A set of laboratory exercises to analyze biological problems using softwares andtools to develop student's interests in scientific discovery.
- Case studies in informatics-based research.

Attendance: The students are expected to attend the classes regularly, since regular attendance is essential to gain academic achievement. As per the University norms, the students having a minimum scale of 70-75% attendance are only qualified to write their end-semester examinations.

Punctuality: Punctuality is the most important quality for the student to be followed and maintained to achieve success. Students who arrive late by 10 mins to the class without any vital reason will be marked absent in the attendance register. On the other hand, valid excuse including personal or medical emergency is acceptable, with prior consent by the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking practice and much more that will provide a wholesome enriched classroom experience. When students participate, they learn from one another and gain their knowledge better.

Submission of Assignment: Assignments are given to students in order to apply the concepts for deeper understanding of the subject. Therefore, each student will be allocated two assignments for the course, covering the entire topic. Students will be given deadline to submit the assignment by the course instructor and good preparation of assignment will help the students for their final exams.

Presentation of Seminar: Apart from the assignments, students are supposed to give an oral presentation during the class seminar hours in their assigned topic. The concerned instructor will encourage the participants to ask valid questions during seminar presentation in order to put up their confidence levels and communication skills. In addition, students will be able to gain information and can be updated in their course.

Preparedness: At the end of every class, the concerned instructor conveys the students about the details that will be handled in the next class to increase the student's awareness related to the topics.

Academic Dishonesty: Academic dishonesty is a completely unacceptable mode of conduct and every student should be aware of this important aspect. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Depending upon the requirement of student's possibility, the course syllabus will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairperson.

Important dates: Scheduled dates for the various activities related to the course

CIA Test I	CIA Test II	Assignment	Seminar
As per Acade	emic Calendar	After CIA T	est I

Course Outline: Core: Introduction to Bioinformatics

- An overview of bioinformatics-concepts and basic terminology used in bioinformatics-scope of bioinformatics in biological system- basic introduction to bioinformatics computing and includes background information on computers in general, the fundamentals of the UNIX/Linux operating system-various open resources essential for bioinformatics.
- Bioinformatics Sequence analysis biological basics needed in bioinformatics, Sequence alignment-Global and Local- Pairwise Alignment, Multiple Alignment-ClustalW.
- Phylogenetics-Phylip package-Various tools used for sequence analysis-BLASTtypes-Algorithms used in sequence alignments-Hidden Markov Model for gene detection- Needleman–Wunsch algorithm- Smith–Waterman algorithm-Dynamic Programming-Dot matrix analysis-Parsimony.
- Databases-Concepts and introduction of different data types-Various protein databases-Protein Data Bank-MMDB-Swiss-Prot, Protein information resources-primary and secondary nucleotide databases-importance of SCOP, PROSITE, CATH.

- Carbohydrate databases-Drug-drug interaction studies-synergism and antagonism-Entrez as information retrieval system.
- Cheminformatics-tools- chemical database-PUBCHEM, SMILES, ACD, Chembank; Structural visualization tool.
- Pharmacy informatics- medication-related data and knowledge within the continuum of healthcare systems including its acquisition, storage, analysis, use and dissemination in the delivery of optimal medication-related patient care

and health outcomes-Medical coding-Application of pharmacoinformatics-ethicalissues in medical informatics.

More books for Reading and Referencing

Introduction To Bioinformatics- Attwood

Publisher: Pearson Education Singapore Pte Ltd, 2007. (ISBN: 978-81-775-8641-1)

Bioinformatics Basics: Applications in Biological Science and Medicine- Hooman Rashidi, Lukas K. Buehler

Publisher: CRC Press/Taylor & Francis Group, 2005. (ISBN: 978-08-493-2375-1)

Bioinformatics in the Post-Genomic Era: Genome, Transcriptome, Proteome, and Information-Based Medicine- Jeffrey Augen

Publisher: Addison-Wesley, 2004. (ISBN: 978-03-211-7386-7)

Introduction to Bioinformatics: A Theoretical and Practical Approach- Stephen A.Krawetz, David D. Womble

Publisher: Humana Press, 2003. (ISBN: 978-15-882-9241-4)

Fundamental Concepts of Bioinformatics- Dan E. Krane, Michael L. Raymer Publisher: Benjamin/Cummings, 2002. (ISBN: 978-08-053-4633-6)

Bioinformatics: Sequence, Structure and DatabanksA Practical Approach- Des Higgins, Willie Taylor

Publisher: Oxford University Press, 2000. (ISBN: 978-01-996-3790-4)

Chemoinformatics: A Textbook- Johann Gasteiger, Thomas Engel Publisher: Wiley publication, 2004. (ISBN: 978-35-273-0681-7)

Pharmacy Informatics- **Philip O. Anderson, Susan M. McGuinness, Philip E. Bourne** Publisher: CRC press, Taylor and Francis group, 2010. (**ISBN: 978-14-200-7175-7**)

			I – Semester				
Core-I	Co	urse Code:	Introduction toBioinfo	rmatics	Т	Credits:5	Hours:5
		502101					
			Unit-I				
Objectiv	e -1	To understa	nd the essential features o	f the inte	rdiscip	linary area of s	science for
		better under	standing of biological data	l.			
Basics of	f Bioir	formatics: I	ntroduction to Bioinforma	tics; Cor	nputers	in Biology to	ounderstand
Biologica	al Syst	em; Basic co	mmands of Windows, Ur	nix and L	inux oj	perating syster	ns; Concept
of open r	esourc	es in Bioinfor	matics.				
Outcome	e – 1	Understand	the essential feature of Co	mputer aı	ndBiolo	ogical data	K2
			Unit-II				
Objectiv	e – 2	To provide	a strong foundation to stud	lents for	perforn	ning further re-	search in
		bioinformat	ics.				
Sequence	e Anal	ysis: Biologi	cal background for sequen	ce analys	is; Seq	uence alignme	ent: Global,
Local, Pa	ir wise	e and Multiple	e sequence analysis; Algor	ithm for a	alignme	ents; Database	Searching;
Tools for	Seque	nce alignmen	t.				
Outcome	e – 2	Categorize	he sequence alignment me	thods.			K4
			Unit-III	19 A.			
Objectiv	e – 3	To create of	portunities for students to	learn alg	orithm,	tool, anddata	in the
	current scenario.						
Biologica	al Dat	abases: Data	abase concepts; Introduct	<mark>ion</mark> to D	ata ty	pes and source	ce; Protein
Sequence	e and	Structural Da	tabases; Nucleic acid da	tabases;	Genom	e databases; S	Specialized
Database	s; Ca	bohydrate I	Databases; Clinically rele	evant dru	ıg-drug	interactions	databases;
Informati	ion reti	rieval from B	ological databases: Entrez	system, [ГCGA	data bases, Bio	oportal
Outcome	e – 3	Summarize	the details about biologica	l tools and	d <mark>datab</mark> a	ise.	K2
			Unit-IV		2		
Objectiv	e – 4	To look at a	biological problem from t	he compu	tationa	l aspects.	
Cheminf	format	ics: Introd	luction; Cheminformat	ics too	ols; (Chemical st	ructure
represent	ation (SMILES and	SMARTS); Chemical Dat	abases: C	SD, A	CD, WDI, Che	embank,
PUBCHE	EM, Cł	emical Struct	ture file formats; Structural	l Isomers;	Struct	ure visualizatio	on.
Outcome	e – 4	Discuss the	e need for chemi-information	atics in	drug d	iscovery and	K2
		explain the	different structural databas	e and the	ir adva	ntages	
			Unit-V				
Objectiv	e – 5	To find out	the methods for analyzi	ng the ex	xpression	on, structurear	nd function
		of DNA, F	RNA and proteins, and t	o unders	tand tl	ne relationship	s between
		organisms.					
Medical	and	Pharmacy	Informatics: Introduction	on to pl	narmac	y informatics	, Medical
Transcrip	otion, l	Role of infor	matics to enhance the se	rvices pr	ovided	by pharmace	utical care
givers. H	givers. Health Information Systems Architecture, Health Data Management, Medical Coding,					cal Coding,	
Telemedi	icine a	nd Telehealth	, Ethics in medical inform	atics, Pha	irmacy	systems and a	utomation,
Informati	ics app	lications in p	harmacy, survey and evalu	ation of o	on-line	resources.	
Outcome	e – 5	Understand	the significance of medi	cal inform	matics	and Acquire	K6
		knowledge	about the development and	lapplicati	on of B	ioinformtics.	

Suggested Readings :

- Lesk, A.M. (2014) "Introduction to Bioinformatics"; Oxford University Press, UK, Fourth edition.
- Gretchen Kenney, (2016) "Bioinformatics: Principles and Analysis"; Syrawood Publishing House USA.
- Higgins D. and Taylor W. (2000). *Bioinformatics*. Cary: Oxford University Press, 1st edition, ISBN 13: 9780199637904.

Scott Markel (2003). "Sequence Analysis in a Nutshell – A Guide to Common Tools & Databases"; O'Reilly; 1 edition, ISBN-13: 978-0596004941.

Bergeron B. (2003). Bioinformatics Computing - The Complete Practical Guide to

- *Bioinformatics for Life Scientists*, by Prentics- Hall, Inc., New Jersey 07458, USA, 1st edition, ISBN :81-203-2258-4.
- Bourne P. E. Weissig H. (2003). *Structural Bioinformatics*, published by John Wiley & Sons, Inc., Hoboken, New Jersey, 1st edition, ISBN: 0-471-20200-2.
- David Mount, (2004), "Bioinformatics: Sequence and Genome Analysis"; Cold Spring harbor laboratory Press, US Revised Edition.
- Ole Lund, Nielsen, M., Lundegaard, C. Kesmir, C. and Brnak, S. (2005) "Immunological Bioinformatics"; The MIT press.

Xiong J. (2006). *Essential Bioinformatics. Cambridge*: Cambridge University Press, 1st edition, ISBN-13 978-0-511-16815-4.

Jean-Michel, Cand Notredame, C. (2006) "Bioinformatics for Dummies"; John Wiley&Sons, Second Edition.

Kindreas D Batevanis, (2006) "Bioinformatics: A Practical Guide to the Analysis of Geneand Protein"; Wiley Inter Science, Singapore, 3rd Edition.

Andrew R. Leach & Valerie J. Gillet, (2007) "An Introduction to Chemoinformatics"; Springer, Revised Edition.

 David Edward, (2007) "Plant Bioinformatics": Methods and Protocol, Humana Press. Rastogi
S. C. Mendiratta N. and Rastogi P. (2008). Bioinformatics Methods and Applications - Genomics, Proteomics and Drug Discovery, published by PHI LearningPrivate Limited, New Delhi, Third edition, ISBN: 978-81-203-3595-0.

Posada D. (2009). *Bioinformatics for DNA sequence analysis*. New York: Humana Press, 1st edition, ISBN-13: 978-1588299109

Gopal S. Jones R. Tymann P. and Haake A. (2010). *Bioinformatics*. Tata McGraw-Hill, 1st edition, ISBN-10: 0073133647

Yang, Z. (2010). *Machine learning approaches to bioinformatics*. Singapore: WorldScientific, 1st edition, ISBN-13: 978-9814287302

- Baxevanis, A.D. and Francis Ouellellette, B.F. (2011) "Bioinformatics –a practical guideto the analysis of Genes and Proteins"; John Wiley & Sons, UK, Third Edition.
- Hossein G. Gilani, Katia G. Samper, Reza Khodaparast Haghi, (2012) "Chemoinformatics: Advanced Control and Computational Techniques"; Apple Academic Press, First edition.
- Peerez-Saanchez, H. (2012). *Bioinformatics*, Rijeka, Croatia: InTech, 1st edition, ISBN: 980-953-307-202-4

Caroline St Clair, Jonathan E. Visick, (2013) "*Exploring Bioinformatics*"; Jones and Bartlett Publishers, Inc; 2nd Edition, ISBN-13: 978-1284034240.

- Arthur Lesk, (2013) "Introduction to Bioinformatics"; OUP Oxford; 4 Edition, ISBN-13: 978-0199651566.
- Kayvan Najarian, Siamak Najarian, Shahriar Gharibzadeh, (2017) "Systems Biology and Bioinformatics: A Computational Approach"; CRC Press; 1 Edition, ISBN-13: 978-1138118034.

Keith J. (2017). Bioinformatics. Totowa, NJ: Humana Press, a part of Springer Science

Business Media, LLC, 2nd edition, ISBN 978-1-60327-429-6.

Online Resourse :-	
1. https://www.google.co.in/books/edition/Introduction to Bioinformatics	

2. https://www.google.co.in/books/edition/Chemoinformatics

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create	
Course desighned by : Dr. Sanieev Kumar Singh & Dr.P. Boomi						

Course Outcome VS Programme Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	L(1)	M (2)	L(1)	-	L(1)	L(1)	L(1)
CO2	S(3)	S(3)	S(3)	M (2)	S(3)	M (2)	-	L(1)	L(1)	L(1)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)	M (2)	M (2)	L(1)	L(1)	L(1)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)	M (2)	S(3)	L(1)	L(1)	L(1)
C05	S(3)	S(3)	S(3)	S(3)	S(3)	M (2)	S(3)	L(1)	M (2)	M (2)
W.AV	3	3	3	2.4	2.8	1.8	1.6		1.2	1.2

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	5-1	S(3)	S(3)
CO2	S(3)	S(3)	P	S(3)	S(3)
CO3	S(3)	S(3)	L(1)	<mark>S(3</mark>)	S(3)
CO4	S(3)	S(3)	M(2)	<mark>S(3</mark>)	S(3)
CO5	S(3)	S(3)	M(2)	S(3)	S(3)
W.AV	3	3	1	3	3

S -- Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar - Introduction to Bioinformatics

- 1. Basic commands of Windows, Unix and Linux operating systems
- 2. To learn Sequence Analysis using a known gene/protein
- 3. Database analysis using publicly available datasets.
- 4. To analyze the structure using Cheminformatics tools.
- 5. To practice an example of Pharmacy Informatics.
- 6. Explain the concept of open resources in bioinformatics.
- 7. Write a short note on global and local alignment.
- 8. Describe the salient features and importance of NCBI.
- 9. Give a detailed note on nucleotide sequence databases.
- 10. Explain the applications of Markov chains and Hidden Markov Model to gene analysis.

Program: M.Sc.,	Semester : I (2022 Onwards)
Course Title: Molecular Cell Biology and Biochemistry Subject Code: 502102	Class Time: As per time table
Name of Course Teacher	Dr. J. Joseph Sahayarayan
Mobile: +91 - 9884495511	Email : josephj@alagappauniversity.ac.in

Molecular Cell Biology and Biochemistry

Course Brief:

Biochemistry and Molecular Cell Biology have unique properties that determine how they contribute to the structure and function of cells and participate in the processes necessary to maintain life. Students will come to an understanding of the central dogma of molecular biology: DNA makes RNA, and RNA makes protein. They willlearn about how we classify the different amino acids and their bonding form the building blocks of complex proteins. The study of structures and functions of biomolecules that include carbohydrates, lipids, proteins and nucleic acids, which controls and processes the metabolism at cellular levels promoted by specific catalysts, flow of genetic information and gene regulation, DNA technology, role of biomolecules in normal physiological systems with some medical applications. The course includes the molecular and cellular basic functions of life with specific foci on mechanisms that facilitate development of multicellular organisms (growth and heredity, interactions between cells, cell motility and transport and cell specialization). The part is built around human development from germ cells to an embryo and gives an introduction to the most important functions of the cell and its structures, embryology and the molecular mechanism of the developmental biology. The part includes elementary gene regulation with an emphasis on eukaryotes and molecular biological methods to study gene regulation. Usage of bioinformatics tools to study complex regulatory relationships and clinical genetics with an emphasis on human hereditary diseases. The part gives an overview of the latest methods that are used in medical research. The course is completed with an integrating project where the contents from the parts Biochemistry, Cell biology and Molecular biology and genetics are examined summationally.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Video-conferencing for lectures that will be sought from experts belonging to overseas reputed institutions
- Case-studies and Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late

by 10mins after the attendance will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academiccareer.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule:

CIA Test I	CIA Test II	Assignment	Seminar
As per Acad	emic Calendar	After CI	A Test-I

Course Outline: Molecular Cell Biology and Biochemistry

The physiological activities in all the living organisms' viz. movement, growth, respiration, digestion, excretion, respiration and response to stimuli are performed by the cells. The Cell is basic unit of structure and function in living system. The structural organization and functions of the cells are uniquely maintained by four major biomolecules namely carbohydrates, lipids, proteins and nucleic acids. The course encompasses the study of cell, cell organelles and deals with detail study of definition, classification, structure and cellular functions of its biomolecules carbohydrates, lipids, proteins and nucleic acids. The overall perspective will be the biomolecules their characteristic properties and organization in carrying out all the living functions which constitute the life.

Carbohydrates:

- 1. Identify their chemical elements and the difference between simple sugars and complex carbohydrates.
- 2. On the food labels, what do sugar or sugar alcohol and fiber refer to?
- 3. Compare and contrast the structure and function of the following carbohydrates and where they are found: glucose, glycogen, starch, cellulose and chitin.

Proteins:

- 1. Identify their chemical elements and functional groups.
- 2. Recognize the structure of an amino acid and the peptide bond that connects di-, triand polypeptides.
- 3. Recognize the presence of 20 amino acids and that not all are essential amino acids.
- 4. Summarize the function of proteins and recognize the importance of the three dimensional shape of a protein on its function and the role of non-covalent bonds in maintaining the shape of a protein.
- 5. Explain protein denaturation and the effect of heat on protein structure and function. **Lipids:**
- 1. Identify their chemical elements and learn their property of insolubility in water.
- 2. Identify the three groups of lipids.
- 3. Compare and contrast saturated, mono-unsaturated and poly-unsaturated fatty acids.
- 4. Explain the importance of poly-unsaturated fatty acids and why omega-3 and omega-6 fatty acids are considered essential.
- 5. List the sources of polyunsaturated fatty acids.

Nucleic Acids:

- 1. Identify their chemical elements and components of a nucleotide.
- 2. Describe the function of DNA.
- 3. Compare and contrast the 2 types of nucleic acids: DNA and RNA.

Enzymes:

- 1. Interpret steady-state and pre-steady state kinetic parameters of enzymatic reactions.
- 2. Bring together structural and kinetic information relevant to a specific reaction to propose a mechanistic model of enzyme catalysis.
- 3. Describe the characteristics of biological membranes and outline broad themes surrounding membrane channels and pumps.

More books for Reading and Referencing:

Biomolecules: (Introduction, Structure & Function) Carbohydrates by Suman Khowala,

Deepak Verma, Samudra P. Banik (2008)

Biomedical Chemistry: Current Trends and Developments by Nuno Vale - De Gruyter Open

Ltd , 2016 (ISBN: 13: 9783110468748)

RNA Interference by Ibrokhim Y. Abdurakhmonov (ed.) – InTech, 2016 (ISBN: 978-953-51-2272-2)

Semester-I						
Core-II	IICourse Code 502102Molecular Cell Biology and BiochemistryTCredits:5				Hours:5	
Unit – I						
Objective - 1 To describe the basic structure and function of prokaryotic andeukaryotic cells.						
Cellular Components and their functions: Basic aspects of Prokaryotic and eukaryotic cells (plant and animal cells). Dynamics of the eukaryotic cell- Molecules of life- Cellular evolution assembly of macromolecules and Origin of life- integrated structural organization of prokaryotic and eukaryotic cells- Concept of a composite cell and Molecular composition of cells. Biomembranes- Structural organization- Models of a plasma membrane, Membrane permeability-Transport across cell membranes- Transmembrane signals- Artificial membranes- liposome. Prokaryotic and Eukaryotic genome organization and structure, mechanisms of gene expression in Prokaryotes and Eukaryotes, factors involved in gene regulation.						
Outcome - 1	Understand the components in	e structure, function, and dynamic prokaryotic and eukaryotic cells.	s of cell	ular	K2	
		Unit – II				
Objective - 2	To discuss the	cell cycle and the processes of mit	tosis and	meiosis.		
Cell cycle ar	d cell division: (Cell cycle - Different stages of r	nitosis -	- significance	of meiosis-	
Cohesins and	condensins in chr	omosome segregation, Microtubu	les in sp	pindle assembly	v, Structure	
of kinetoshor	e, centrosomes an	d its functions, Components in c	ell cycle	e control - Cyc	lin, CDKs,	
Check points	in cell cycle, pha	se dependent cyclic CDK compl	exes Ce	ll cycle and its	regulation,	
events during	mitosis and meios		•	1 /1 1 1	170	
Outcome - 2	mechanisms in	volved in these processes.	ion, and	themolecular	K2	
		Unit – III				
Objective -3	To classify an proteins, carbo	d describe the structure and func hydrates, lipids, nucleic acids and	t <mark>ion o</mark> f l vitamin	piomoleculesino s.	cluding	
Structure, Functions and Classifications of Biomolecules: Classification, properties, structural organization of proteins - Primary, secondary, tertiary and quaternary structures, forces stabilizing the structure. Carbohydrates: Introduction and general classification of carbohydrates. Structures, properties and biological functions of monosaccharides. Classification, structure and properties of lipids. Introduction, structure of nitrogenous bases - purines and pyrimidines, nucleosides, nucleotides, formation of phosphodiester bonds. Structure, types, properties, functions of DNA and RNA. Introduction, structures, sources, RDA, functions, deficiency diseases of fat soluble and water soluble vitamins.K4						

	Unit – IV					
Objective - 4	To explain the basic concepts of genes, mutations and recombinant DNA					
	technology.					
Concepts of Ge	ene and Mutations: Basic concepts of replication, Regulation of translation, Post					
transcriptional modifications, processing of DNA, RNA and proteins methods for studying gene						
expression and i	regulatory sequences, Recombinant DNA technology, overexpression. Mechanisms					
of genome alte	chromosomal inheritance. Inheritance of mitochondrial and chloroplast genes maternal					
inheritance Co	ncents of gene: Allele multiple alleles pseudo allele complementation tests					
Mendelian prin	ciples: Inheritance sex linked inheritance Dominance segregation independent					
assortment Ext	rensions of Mendelian principles: Codominance incomplete dominance gene					
interactions. Ge	ene mapping methods: Linkage maps, tetrad analysis, mapping with molecular					
markers, mappin	by by using somatic cell hybrids, development of mapping population in plants.					
Outcome - 4	Understand the concepts of gene expression, regulation, and mutation,					
	as well as the principles of Mendelian inheritance and gene mapping K3					
	methods.					
	Unit-V					
Objective - 5	To describe the properties of cancer cells and the roles of oncogenes andtumor					
	suppressor genes in carcinogenesis.					
Oncogenetics :	Properties of malignant cells, Types of genes - Proto oncogenes, Oncogenes,					
Cellular oncoge	enes, Tumor Suppressor genes, Chromosomal abnormalities associated with the					
specific maligna	ncies- APL, CML & Retinoblastoma.					
Outcome - 5	Describe about oncogenetics, the properties of malignant cells, and K4					
	the genetic basis of specific malignancies.					
Suggested Read	lings :-					
Nelson, DL.,	Cox, MM. (2004). Lehninger's Principle of Biochemistry. Freeman, 4th ed.					
Murray, RK.	, Granner, DK., Mayes, PA., Rodwell, VW., (2006). Harper's Biochemistry.					
McGraw Do Pobortio E	Hill, 2/th ed.					
Alberts B B	Bray, D. Lews, I. Paff, M. Poherts, K. Watson, ID (1991). Molecular Biology of					
the cell (Garland publishers. Oxford 3rd edn					
Voet. D., Vo	et. J. (2010). Biochemistry Part III. "Biomolecules - Mechanisms of Enzyme					
Action a	nd Metabolism" John Wiley & Sons INC 4th Edition					
Rerg Jermy	M Tymoczko John I. Gatto Gregory I. Stryer Lubert IR (2015)					
"Biocher	nisty" Macmillan Learning Bedford Freeman & Worth Publishing Group 8th					
Edition	insty Machiman Leanning, Bedrord Meeman & Worth Fublishing Group, 844					
A I Lehning	er (2017) "Principles of Riochemistry": W.H. Freeman and Company 7th edition					
A.L. Lemmig	C. (2017). Therefore A Melecular Assure 12. Descent Educational Limited 2rd					
Edition	J. (2010) IGenetics – A Molecular Approach ; Pearson Educational Limited, 5 rd					
	Alberts, B. (2014) The Wolecular Blology of The Cell, Garland Science Fublisher,					
Oth Edition	on. Lewin, B. (2017) Genes XII ⁻ ; Jones and Bartlett Learning.					
Alberts, D.	Biay, D, lewis, J, Kali, M. Kobelts, K, Hopkin, K, Johnson, A. (2014).					
Dena Lorra	al CellBiology"; Garland Science Publisher, 4 th Edition.					
Berg Jermy,	M, Tymoczko John, L, Gallo Gregory, J, Stryer Lubert, JR. (2013)					
"Biocher	nisty"; Macmillan Learning, Bedford Freeman & Worth Publishing Group, 8 th					
Edition.	Laving M Lagiak P Gann A Pall S P (2012) "Malagular Pialagy of the					
watson, J.D,	Levine, M. Losick, R. Gann, A, Ben, S P. (2015). Molecular biology of the					
Gene;Pe	arson Educational Limited, m ² , / ⁴¹ Edition.					
Lodish, H. (20	016) "Molecular Cell Biology"; W.H Freeman Publisher, 8 th Edition.					
Cooper, G.M	I. Hausman, R.E. (2015)"The Cell: A Molecular Approach; Oxford University					
Press", 7	^{tn} Edition.					
Karp, G, Ma	arshell ,W, Twasa, J. (2015) "Cell and Molecular Biology –Concepts and					

Experiments"; John Wiley & Sons, New York, 8th Edition.

De Roberties, E.D.P. De Roberties, E.M.F. (2010) "Cell and Molecular Biology", Lippincott Williams& Wilkins, 8th Edition.

Online Resources:

1. https://www.google.co.in/books/edition/Biological_Macromolecules

2. https://www.sciencedirect.com/topics/neuroscience/cell-cycle						
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create	
			urse designed by	Dr I Joseph	Sahavaravar	

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	M(2)	L(1)	S(3)	-	S(3)	M(2)	M(2)
CO2	S(3)	S(3)	S(3)	L(1)	L(1)	S(3)	-	S(3)	M(2)	M(2)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)
W.AV	3	3	3	2.2	2.2	3	1.2	3	2.4	2.6

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1) Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	5-1	M(2)	S(3)
CO2	L(1)	L(1)	L(1)	M(2)	S(3)
CO3	M(2)	L(1)	L(1)	L(1)	S(3)
CO4	M(2)	L(1)	L(1)	L(1)	S(3)
CO5	S(3)	S(3)	M(2)	M (2)	S(3)
W.AV	2	1.6	1	1.6	3

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar - Biochemistry and Molecular Cell Biology

- 1. Composition of living matter.
- 2. Biomembrane organization and function.
- 3. Structure, diversity and function of nucleic acids.
- 4. Lipoprotein structure, properties and function.
- 5. Structure and properties of storage and membrane lipids.
- 6. General principles of enzyme catalysis
- 7. Regulatory steps in metabolic regulation.
- 8. Glycolytic pathway.
- 9. Kreb's cycle.
- 10. Basic principles of Bioenergetics

Program: M.Sc.,	Semester: I (2022 Onwards)
Course Title and Code: Mathematics and	Class Time: As per Time Table
Statistics for Biologists	
Subject Code: 502103	
Name of the Course Teacher	Prof. J. Jeyakanthan
	Dr. M. Karthikeyan
Mobile: +91 - 97898 09245	Email: jjeyakanthan@alagappauniversity.ac.in
+91 - 9486981874	karthikeyanm@alagappauniversity.ac.in

Mathematics and Statistics for Biologists

Course Brief:

Advances in mathematical methods and techniques in Bioinformatics have been growing rapidly. Mathematics has a vital role in describing the complexities of biological processes and structures. Mathematical analyses in the depiction of molecular structures of Biological systems have essential meaning for Bioinformatics, Biomathematics and Biotechnology. Mathematics is used to elucidate trends, patterns,

connections and relationships in a quantitative manner that can lead to important discoveries in biology. This syllabus is committed to bring a closer connection and better integration between mathematical methods and biological codes, sequences, structures, networks and systems biology. It is intended for graduate students and researchers who want an overview of the field and information about the possibilities and challenges presented at the interface between mathematics and bioinformatics. At the end of the course, the student will gain valuable knowledge about mathematical methods and tools, phenomenological results and interdisciplinary connections in the fields of Molecular Genetics, Bioinformatics, and Informatics. Biostatistics represents an introduction and provides a series of methodologies to analyze and handle different data and types. Specific topics include tools for describing central tendency and variability in data; methods for performing inference on population means and proportions via sampling the data; statistical hypothesis testing and its application to group comparisons; issues of power and sample size in study designs; and random sample and other study types. While there are some formulae and computational elements to the course, the emphasis is on interpretation and concepts. R programming represents as a promising tool for the statistic application in biology. It helps to analyze the basic statistics such as correlation, probability distributions, co-variance, T-test and ANOVA using Rprogramming.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Solving complex equations using real time solving approaches that areassociated with biological problems such as probability and statistics.
- Video-conferencing for lectures that will be sought from experts belonging to overseas reputed institutions
- Case-studies and Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the

classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students

who arrive late by 10mins after the attendance will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

CIA Test I	CIA Test II	Assignment	Seminar	
As per Acad	emic Calendar	After CIA Test I		

Important dates: Please note down the important dates and stick to the schedule

Course Outline: Core: Mathematics and Statistics for Biologists (5 Credits)

- On completion of this course students will be able to follow the mathematical demonstrations and proofs used in Mathematics and Biostatistics, and to understand the mathematics behind statistical methods introduced at PG level.
- The intention is to allow students to concentrate on statistical concepts in subsequent courses, with an understanding of the mathematics employed.
- Content includes: exponential functions; vector algebra; calculus; integrals and differentiation; series, limits, approximations and expansions; matrices and determinants
and numerical methods.

- Set theory and Probability: Addition law of probability, Conditional probability, Central limit theorem and Bayes theorem.
- R-Programming for Biostatistics: Basic statistics in R, probability distribution, correlation, ANOVA and student's t-test.

More books for Reading and Referencing

Matrix Methods and Differential Equations - A Practical Introduction **Wynand S. Verwoerd**; 2012 (**ISBN: 978-87-403-0251-6**)

Essentials of Statistics: Exercises David Brink; 2010 (ISBN: 978-87-7681-409-0)

A First Course in Ordinary Differential Equations Norbert Euler; 2015 (ISBN: 978-87-403-1045-0)

An introduction to partial differential equations **R.S. Johnson**; 2012 (ISBN: 978-87-7681-969-9)

Statistical methods in the Biological and Health Sciences"; Third Edition, McGraw Hill Publishers. **Milton, J.S.**; 1998 (ISBN:978-00-7290-148-1)

		Semester- I				
Core-III	Course Code: 502103	Mathematics and Statistics for Biologists	Т	Credits: 5	Hours: 5	
		Unit – I				
Objective -1	Formulate as we	ll as analyze mathematical and sta	atistica	l problems,	precisely	
define the key terms, and draw clear and reasonable conclusions						
Trigonometry, Vector Analysis, Calculus and Matrices: Trigonometric Functions, Series						
Expansion, I	nverse. General Val	ues, Graphs, Calculus: Limits, Analy	sis. De	finite Integral	s. Vector	
Algebra, Ve	ctor Calculus. Basic	Computations, Matrices, Measure T	ieorv: 1	Introductory (Concepts.	
Borel Sets.	Lebesgue Integratio	n. Complex Variable: Complex Fund	ctions.	DeMoivre's	Theorem.	
Conformal	Man Complex Inte	egration Numerical Techniques. Ba	sic Fot	malism Met	hods for	
Solving Equ	ations Finding Fige	n values & Figenvectors Solving OD	E & PI)F Differenti	ation and	
Integration		in values & Engenveetors, Solving OD		Differenti	ation and	
Outcome 1	Domombor the ba	size of this on omotive waster calculus	and m	atriaas	IZ1	
Outcome-1	Remember the ba	sics of trigonometry, vector calculus	and m	atrices	NI	
Objective-2	Use mathematica	I and statistical techniques to solve	well-d	lefined probl	ems and	
	present their mat	hematical work.				
Data Repre	sentation: Types of	numerical data, Tables and Graphs.	Measur	es of central 1	tendency:	
Arithmetic N	Aean, Weighted arit	hmetic mean, Median and Mode - Ge	eometri	c mean and I	Harmonic	
mean. Meast	ares of dispersion:	Range, Inter-quartile range, Average	deviation	on, Standard	deviation	
and Coeffic	ient of variation, I	Lorenz curve. Theory of Sampling	: The	purpose of s	sampling,	
Principles of	f sampling, Method	s of samplings, Techniques of non-	orobabi	lity sampling	, Size of	
Sample, Sam	pling and Non-Samp	oling errors.				
Outcome-2	Understand the	principles of data representat	ion a	nd sampling	g K2	
	techniques.	S AL AGARDA UNIVERSITY 10		I I		
		Unit – III				
Objective 3	Evolain the imp	ortance of mathematics and its to	chniar	ues to solve	rool life	
Objective-5	nroblems and n	rovide an alternative paradigm f	or the	limitations	of such	
	toobniques and ve	lidete the results accordingly	or the	mintations	of such	
Diatuihutian	Evenested volve	and Variance Normal Discusial dist	Instian	Deissen die	tuilaati au	
	S: Expected value	and variance Normal Binomial distriction of here	10ution	, Poisson dis	Trans II	
Normal disti	ibution, Chi square	test, Students't' test. Testing of hyp	othesis	: Type I and	Type II	
errors, powe	er of a test, p valu	ie. Set theory and Probability: Ro	baster a	and Set build	ler form;	
Demorgans'	Law, Limits: Cons	tants, Types of constants, variables,	functio	n, right and	left hand	
limits. Conc	ept of probability,	Samples pace, Independent events,	, mutu	ally exclusive	e events,	
Addition law	of probability, Con	ditional probability, Central limit theo	orem, B	layes theorem	, Markov	
chains, their	transition probability	y and stationary distributions.				
Outcome-3	Acquire the know	ledge of Probability and types of dis	tributio	on	K3	
		Unit – IV				
Objective	Assessing the imp	act of chance and variability on the	nterpr	etation of res	earch	
	findings and subs	equent recommendations for public	health	practice and	policy.	
 Correlation	and Regression.	Types of Correlation Methods of	studvi	ng Correlatio	n: Scatter	
diagram. Ka	arl Pearson's Coeffic	ient of Correlation, Spearman's Rank	Correla	tion	II. Scatter	
- unugrunn, m	Analyze the signif	icance of correlation and regression	in stati	istics	K4	
Outcome-4			~ • • • • •			
	1	Unit – V			1	
	Biostatistics can be	e applied in major areas of drug design	n and d	iscovery for e	example to	
Ubjective-5 evaluate the different hypotheses using ANOVA, t-test, correlation, and regression using						
	R-programming fo	r the data generated during the exercise	e of con	nputational te	chnique.	
Biostatistic	s: Application of sta	tistics to biology, sample size and pow	ver anal	lysis, hypothe	sis testing,	
confidence	intervals, regression	h, ANOVA, Computers of software p	заскаде	e for statistica	il analysis	
menualing R	, SAS, and FRISM p	valhages.	los of h	instatistics	V 5	
Outcome- 5	Apply and Evalua	ne me biological data using techniqt	ies of D	iostatistics	N3	
Suggested	Doodings.					
Suggested			D' 1	n a 1 · 1		
Segal,L.(1	980) "Mathematical	Models in Molecular and Cellular	Biolog	gy´´;Cambridge	e:	

Cambridge University Press.

Isaev, Berlin, A. (2004) "Introduction to mathematical methods in bioinformatics"; Springer.

Zar,J.H.(1984) "Bio Statistical Methods"; Prentice Hall International Edition,USA

Gurumani, N., (2015). "An Introduction to Biostatistics", MJP Publisher, 2nd Edition.

NormanM.(2001) "The Art of R Programming – A Tour of Statistical Software Design", Cengage Learning.

Lander, P. (2017)"R for Everyone: Advanced Analytics and Graphics", 2nd Edition, Pearson.

Raman, K.V. and PalSourav, P. (2005)" Mathematics in chemistry"; Vikas publishing house Pvt.ltd., NewDelhi.

Stephenson,

F.H.(2003)"Calculationsinmolecularbiologyandbiotechnology:aguidetomathematicsinthelaborator y";Amsterdam,AcademicPress.

Stephenson,G. and Radmore, P.M. (1990)" Advanced mathematical methods for engineering & science students"

Viergever, M.A. and Todd-Pokropek, Andrew (1988) "Mathematics and computer science in medical imaging".

Arfken, G.(1970)"Mathematical Methods for Physicists"; Academic Press, NY.

Roman P., Pergamon.(1975)"Some Modern Mathematics for Physicists and Other Outsiders";NewYork,Vol.2,p.660.

Balaguruswamy."NumericalMethods";Tata MegraHill.

Warren, J., Gregory, E. and Grant, R. (2004) "Statistical methods in Bioinformatics"; First edition, Springer-Verlag, Berlin.

Milton, J.S.(1992)"Statistical methods in the Biological and Health Sciences";Second Edition,McGraw Hill Publishers.

Rosner, B. (2005) "Fundamentals of Biostatistics"; Duxbury Press.

Online Resources:

1. https://link.springer.com/book/10.1007/978-981-10-8627-4

2. https://onlinelibrary.wiley.com/doi/book/10.1002/0471602396

K1- Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6- Create
		Course designed by: Pro	of. J. Jevakanth	an & Dr. M. Kar	thikevan

Course Outcome Vs Program Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	M(2)							
CO2	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)
CO3	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	L(1)	L(1)	L(1)	M(2)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)
CO5	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)	S(3)	S(3)	L(1)	M(2)
W. AV	3	2.6	2.6	2.4	2.4	2.8	2.6	2.6	1.6	2.4

S-Strong (3), M-Medium (2), L-Low (1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	M(2)	S(3)	S(3)	M(2)	M(2)
CO2	M(2)	S(3)	M(2)	M(2)	L(1)
CO3	S(3)	M(2)	M(2)	M(2)	L(1)
CO4	M(2)	L(1)	S(3)	S(3)	L(1)
CO5	L(1)	M(2)	M(2)	S(3)	L(1)
W. AV	2	2.2	2.4	2.4	1.4

Course Outcome Vs Program Specific outcomes

S-Strong (3), M-Medium (2), L-Low (1)

Assignment & Seminar - Mathematics and Statistics for Biologists

- 1. Solving Problems based on the exercises in Vector Algebra, Matrices and Determinants, Integral calculus Differential Calculus and Trigonometry.
- 2. Computational exercises using SAS packages and R programming.
- 3. To find the angle between vectors using scalar and vector products.
- 4. Describe the equations using vector expressions.
- 5. Students't' test and De Morgan's' Law.
- 6. Measures of central tendency.
- 7. Explain the principle, purpose and method of sampling?
- 8. Write short note on analysis of variance (ANOVA).
- 9. Differentiate between Regression and Correlation with suitable examples.
- 10. Power analyzes for sample size determination

Program: M.Sc., Bioinformatics	Semester : I (2022 Onwards)
Course Title: Lab-I Database	Class Time: As per time
Management System and MYSQL	
Subject Code: 502104	
Name of Course Teacher	Dr. RM. Vidhyavathi
Mobile: +91 - 9444835869	Email : vidhyamiss@gmail.com

Lab-I Database Management System and MYSQL

Course Brief

The primary goal of this course is to learn principles and practices of database management and database design. Applications development using database programming techniques emphasizing database structures, modeling, and database access. It includes representing information with the relational database model, manipulating data with an interactive query language (SQL) and database programming, database development including internet applications, and database security, integrity and privacy issues.

MySQL is one of the most popular RDBMS used today and a solid understanding of SQL is critical if the students want to have a successful career in web development. In this class is intended for analysts, developers, designers, administrators, and managers new to the SQL programming language. Upon completion, students will understand SQL functions, join techniques, database objects and be able to write queries and stored procedures.

Teaching methods

The teaching includes lectures, discussions, demonstrations, concept maps and models, self-study and question times and an integrating project work. The project work is indepth studies in groups with an emphasis on own work and literature studies. The course is completed with a written final examination.

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance has been taken will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patentedknowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meetingthe competitive demands of the discipline the syllabus courses will be re-structured andupdated accordingly at the discretion of the Professor(s) and Board of studies chairman. **Important dates:** Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar
As per Acad	emic Calendar	After CI	A Test-I

Course Outline: Database Management System and MYSQL

On completion of this course students will be able to acquire knowledge about

- Database Fundamentals and three levels of Database architectures.
- Install, configure, and interact with a relational database management systemand MySQL.
- Utilize a database modeling technique for a single entity class.
- Implement the principles and concepts of information integrity, security and confidentiality.
- Normalization Theory: Functional dependencies, 2NF, 3NF, BCNF, 4NF, 5NF.
- Transactions, Concurrency, And Recovery: Transaction basics; Concurrencybasics; Recovery basics; Shading in Mongo.
- Apply ethical computing concepts and practices to database design and implementation.
- Demonstrate the functions of MySQL. Use SQL to update an existing and create a table in the database.
- Database maintenance: Backing Up and Restoring MySQL Databases.
- Crash Recovery, MySQL Options File and Configuring and Tuning the MySQL Server.
- DBMS Data Security, Recovery, and Support and Database Administration.

More books for Reading and Referencing

Fundamentals of Database Systems: Ramez Elmasri & Shamkant B. Navathen, Pearson Education, 2016. ISBN: 013-3970779.

High Performance MySQL: Optimization, Backups, and Replication, Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, O'Reilly Media, Inc,2012. ISBN: 1449332498, 9781449332495

Concepts of Database Management System: <u>Naik</u>, Pearson Education India, 2013. ISBN - **10**: 9332526281, ISBN -**13**: 978-9332526280

Database Driven Web Development with Perl & MySQL, By Thomas Valentine, 2016 ISBN: 1484205154, 9781484205150.

			Semester-I						
Core-IV	Coι	irse Code:	Lab-I –Dat	tabase Management	Р	Credits:4	Hours:8		
		502104	Syster	n and MYSQL					
				UNIT-I					
Objective	-1	To provide	a sound	introduction to th	e dis	cipline of dat	abase		
		management	as a subject	in its own right, rathe	r than	as a compe	ndium of		
		techniques an	nd product-spe	ecific tools.					
Introduct	ion	to DBMS: I	ntroduction t	o Databases, DBMS E	Definitio	on, Characte	ristics of		
DBMS, A	ppli	cation and adv	antages of DI	BMS, Instances, Schema	s and I	Database Stat	es, Three		
Levels of	Ar	chitecture, Da	ita Independe	ence, DBMS languages,	, Data	Dictionary,	Database		
Users, Dat	ta A	dministrators.							
Outcome -	1	Understand t	the services pr	covided by a Database Ma	anagen	ent System.	K2		
		Database Ac	lministrators,	Database Application		Developers,			
		Database Spe	cialists, and I	OBMS developers.					
		1		UNIT-II					
Objective	-2	To give a goo	d formal foun	dation on the relational n	nodel o	f data.			
Data Moo	lels	in DBMS: Ent	tity Relationsh	nip Model, Entity Types,	Entity	Sets, Attribut	es and its		
types, Ke	ys, I	E-R Diagram,	Data Integrity	RDBMS –Concept, Co	ompone	ents and Cod	d's rules.		
Relationa	I Da	atabase Mode	I: Logical vie	ew of data, keys, integri	ty rule	s, Relational	Database		
Design: fo	eatur	res of good re	lational datab	base design, atomic dom	ain and	d Normalızatı	on (INF,		
2NF, 3NF	, BC	CNF).	5						
Outcome -	2	Identify the 1	methodology of	of conceptual modeling t	hrough	Entity	K4		
	Relationship model.								
UNIT-III									
Objective	-3	To present So	QL and procee	dural interfaces to SQL co	ompreh	ensively.			
Open Sou	irce	Database Soft	ware: Feature	es of MySQL data types:	Numer	ic, date & tin	ie, string,		
Table crea	atior	i in MySQL: 1	nsert, delete,	update, select, where cla	use, oi	dering the re	sult, like		
operator S	selec	ting Multiple t	ables: using j	oin, using queries Modif	ying re	cords:			
update co	mm	and, replace	command,	delete command date	& t1	me function	s in		
MySQL.		anced Conce	pts in Data	base Management Sys	stem-	Object-based	Database		
Systems: 0	Jbje	ct Oriented DE	SWS (OODBN	AS)-Object Relational DI	<u>3MS (C</u>	DRDBMS)	175		
Outcome -	3	Develop an	understanding	g of the differences be	tween	OODBMS,	К5		
		ORDBMS at	nd RDBMS	and the practical imp	olicatio	ns of each			
		approach		TINIT/EN TX 7					
	4	T					COL		
Objective -	-4	To present the	e concepts and	a techniques relating to a	query p	processing by	SQL		
T 4 4	•	engines.			т :	<u>C1</u>	7 1		
T	10 n	to MySQL: E	asic Linux co	ommands, About Linux,		Command, C			
I ypes, Ins	stam	Ing MySQL: N	iysQL Install	ation, windows installat	lon, Li	NUX KPIVI IN	different		
mothoda 4		mstanation, S	Linux Marca	ation, starting and stop		INSUL: FOUR	Quarias		
	u st	TCL Overier	LIIIUX, IVIYS	QL Stopping, Basic My	SQL Q	MuSOI and	jta ucces		
	nes	From Lag Or	s, types of J	unis, Unions, Various I	ita farra	wiysQL and	ns uses:		
	Jugs,	Error Log, Qu	ery Log, Slow	Query Log, Binlog and	us iorn	iai, Kelay Log	5. TZ 4		
Outcome -	4	design	use of indexin	ig and nashing technique	usea 11	Database	K4		
		uesign.							

Objective -5 Create applications using MYSQL Admin Commands						
Mysql Admin Commands: MySQL Admin Commands, Workbench MySQL, Locking in						
MySQL: Locking in MySQL, Internal Locking, Table level Locking, Row level Locking,						
External Locking, Dead Lock, MySQL client Programs, MySQL Table maintenance: Table						
Maintenance, Analyze Table, Backup Table, Check Table, Checksum Table, Optimize Table,						
Repair Table. Restore Table. Moving Tablespace. Information Schema and Performance						
Schema: MySOL Information schema, Tables in Information schema, MySOL Performance						
schema.						
Outcome - 5 Examine the use of indexing and hashing technique used in Database K6						
design						
Suggested Readings;-						
Silberschatz, A., Korth, H.F. and Sudarshan, S. (2010) "Database system Concepts",						
McGraw Hill Publishers, Fourth Edition.						
VaswaniVikram, (2017) "MySQL(TM): The Complete Reference", Tata McGraw HillPublications						
First Edition						
Rob, Coronel, (2014) "Database Systems", Cengage Learning, Seventh Edition. RamezElmasri,						
Shamkant B. Navathe, (2010), "Fundamentals of Database Systems", Pearson / Addisionwesley						
SIXIN Edition. Devi DuBois (2002)"MuSOL Cookhook " Same Publishing Second Edition						
Paul Dubois, (2005) MySQL Cookdook , Sains Fublishing, Second Edition. Raghu Ramakrishnan & Johannes Gebrke (2003) "Database Management System"						
Magnu Kamakrisman & Jonannes Genrke, (2003), Database Management System,						
Date, C. J. (2000) "An introduction to Database systems". Addison Wesley Publishers Seventh						
Edition.						
Luke Welling, Laura Thomson, (2003)," MySql Tutorial", Sams Publishing.						
Online Resources:						
1.https://mrcet.com/downloads/digital_notes/ECE/III%20Year/DATABASE%20MANAGEM						
ENT%20SYSTEMS.pdf						
2. https://books.goalkicker.com/MySQLBook/						
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create						
Course designed by: Dr.RM.Vidhyavathi						

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	-	M(2)	S(3)	-	-	L(1)	L(1)	M(2)	M(2)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	M(2)	M(2)	M(2)
CO3	S(3)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)	M(2)
CO4	S(3)	M(2)	M(2)	M(2)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)
CO5	S(3)	M(2)	M(2)	S(3)						
W.A V	3	2	2.4	2.6	2.4	2	2	1.8	2	2.2

Course Outcome VS Programme Outcomes

S-Strong (3), M-Medium (2), L- Low (1)

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	-	L(1)	S(3)	S(3)
CO2	S(3)	S(3)	L(1)	-	S(3)
CO3	S(3)	S(3)	M(2)	S(3)	S(3)
CO4	S(3)	S(3)	M(2)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.Avg	3	2.4	1.8	2.4	3

Course Outcome VS Programme Specific Outcomes

Assignment & Seminar - Database Management System and MYSQL

Overview and types of DBMS, Features of DBMS, E-R Model.

- 1. Logical view of data, keys, 1NF, 2NF, 3NF, BCNF.
- 2. MySQL data types with suitable example.
- 3. Write the basic commands in Linux and basic MySQL Queries.
- 4. MySQL Four different methods to start MySQL in Linux, MySQL Stopping, MySQL and its uses.
- 5. Write the Procedure of Installing MySQL in Various Operating Systems.
- 6. Explain MySQL Logs, Error Log, Query Log, Slow Query Log, Binlog and its format, Relay Log.
- 7. Describe MySQL Admin Commands and Explain Deadlock.
- 8. MySQL Table maintenance, Information Schema and Performance Schema in MySQL.

S – Strong (3), M-Medium (2), L- Low (1)

SEMESTER-II

Program: M.Sc.,	Semester: II (2022 Onwards)
Course Title: Phylogeny and	Class Time: As per Time Table
Phylogenomics	
Subject Code: 502201	
Name of the Course Teacher	Dr. M. Karthikeyan
Mobile:+91 - 9486981874	E-mail:karthikeyanm@alagappauniversity.ac.in

Phylogenv and Phylogenomics

Course Brief:

This course is for students/researchers dealing with the analysis of multiple molecular sequences at several levels: Populations, species, clades, communities. These biologists address questions relative to the evolutionary relationships among these sequences, as well as the evolutionary forces structuring biodiversity at different scales. The course provides exceptional knowledge in Phylogenetics through computational algorithms and software skills.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Video-conferencing for lectures that will be sought from experts belonging to overseas reputed institutions
- Case-studies and Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance has been taken will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built

their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academiccareer.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	II CIA Test	Assignment	Seminar
As per Aca	ademic Calendar	After CI	A Test-I

Course Outline: Core: Phylogeny and Phylogenomics

- Basic concepts in systematics, taxonomy and phylogeny.
- Species concept, kingdom to species, the five kingdoms, classical, phenetic and cladistic approaches.
- Definition and description of phylogenetic trees and various types of trees.
- Fundamental concepts of neutral evolution, molecular divergence and molecular clocks.
- Protein and nucleotide sequence analysis.
- Gene duplication and divergence. concepts and rate of change in gene frequency through natural selection, migration and random genetic drift;
- Phylogenetic analysis algorithms: Maximum Parsimony, UPGMA, maximum likelihood algorithm and Bootstrapping methods.
- Transformed Distance Neighbors-Relation, Neighbor-Joining, jackknife method.
- Gene discovery using Fourier analysis
- Survey of software programs available for phylogenetic analysis.

More books for Reading and Referencing

Phylogenetic Analysis Of DNA Sequences, Oxford Press, New York by Michael M. Miyamoto, 1992 (ISBN:0-19-506698)

Practical taxonomic computing by Pankhurst, R.J, 1991 (**ISBN: 0521417600**, **9780521417600**)

Semester – II									
Core-V	Course Code	Phylogeny and Phylogenomics	Т	Credits: 4	Hours: 4				
	502201								
		Unit – I							
Objective - 1 To understand concepts of molecular evolution and the nature of data forderiving									
	molecular phylo	ogeny							
Molecular Ev	volution: Conce	pts of neutral evolution, molecular	dive	ergence and m	olecular				
clocks; Molec	ular tools in phy	logeny, classification and identificat	ion;	Protein and nu	cleotide				
sequence anal	lysis; Origin of	new genes and proteins; Gene de	uplic	ation and dive	ergence.				
Concepts and	rate of change in	gene frequency through natural selec	tion,	migration and	random				
genetic drift; A	Adaptive radiation	n; Isolating mechanisms; Speciation; A	Allop	patricity and					
Sympatricity;	Convergent evolution	ution; Sexual selection; Co-evolution.							
Outcome - 1	Understand mo	lecular evolution principles and the p	orope	rties ofdata for	K2				
	generating mole	ecular phylogeny							
		Unit – II							
Objective - 2	To gain knowle	dge about the algorithms used for the	sequ	ence alignment	ţ				
	and its applicati	ons							
Algorithm i	n Sequence A	lignment: Why align sequences -	sin	nilarity v/s ho	omology -				
heterologs, or	rthologs, paralog	gs, xenologs - details of Needleman	- W	unsch, Smith-	Waterman				
algorithms w	ith worked out e	examples - hashing methods with wo	orked	l out examples	- BLAST				
and FASTA.	Basic concepts of	of various approaches for MSA (e.g.	prog	ressive, hierarc	hical etc.).				
Representing	and scoring a n	nultiple sequences alignment - dynan	nic p	programming for	or multiple				
sequence alig	gnment pitfalls	progressive or hierarchical alignmen	t wi	th worked out	examples				
substitution n	natrices - evoluti	onary models - PAM substitution ma	trice	es - BLOSUMs	ubstitution				
matrices - gap	o penalties.				1				
Outcome - 2	Expound the a	algorithms in sequence alignment met	hods		K4				
		Unit – III	_						
Objective - 3	To understand	I the pattern discovery and classification	on m	ethods of prote	ins				
Pattern Disc	overy and Cha	racterization in Protein and DNA	Sequ	iences: Sequer	nce pattern				
representation	ns – deterministi	c patterns – regular expressions – pro	obabi	listic patterns -	- sequence				
logos – gener	al methods of pa	ttern classification – methods for prot	teins	– hidden Mark	ov models				
and application	on to analyses o	f protein sequences – general metho	ds o	f gene discove	ry – using				
HMM, Gener	mark – artificial	neural networks – introduction and	l the	ir use in gene	discovery,				
GRAIL – Gei	ne discovery usir	ng Fourier analysis, GeneScan							
Outcome - 3	Describe the o	concept of pattern discovery and disc	uss a	about the	K1				
	protein and D	NA sequence characterization							
		Unit – IV							
Objective - 4	1 To learn and	apply the statistical approaches and m	nodel	s for phylogene	etic				
	analysis and	tree reconstruction		<u> </u>					
Phylogenetic	trees: Phylogen	etic representations, Definition and	desc	cription, variou	s types of				
trees; Steps in	constructing a 1	tree, Consensus (strict, semi-strict, A	dam	s, majority rule	e, Nelson).				
Data partition	ing and combin	hation. Tree to tree distances, similar	arity	. Phylogenetic	c analysis				
algorithms:	viaximum Parsi	imony, UPGMA, Iransformed Dis	stanc	e, Neighbors-	Kelation,				
meignbor-Join	ing, jackknife, P	robabilistic models and associated alg	goriti	$\lim_{n \to \infty} \sup_{n \to \infty} \sup_{n$					
models of evo	biution and maxi	SAM mothod	ppin	g methods.Use	OI HIMIM-				
Oased Algorith	$\frac{1}{100} \frac{1}{100} \frac{1}$	byle constitution.		ia alaonithana	V2				
Outcome - 4	biscuss the p	mylogenetic trees and phylogenetic ar	alys	is algorithms	K2				

		Unit – V		
Objective - 5	The main objectives	of the course are to tea	ch the theoretica	l bases of
	phylogenetic analysis,	and to give the ability to in	itiate a phylogene	tic analysis
	starting from the files	of molecular sequences u	intil the interpreta	tion of the
	results and the graphic			
Softwares for p	ohylogenetic analysis:	Survey of software program	ms available forpl	nylogenetic
analysis. Algorit	hm of CLUSTALW a	nd PHYLIP, MUSCLE, M.	AFFT and PileUp	and their
application for se	equence analysis (inclue	ing interpretation of results), concept of dend	rogram and
its interpretation	n. Plotting, visualizing	& printing phylogenetic	trees: TreeView	and other
tools. Application	ons of phylogeny analy	ses, Comparison of Phylog	genetic Trees obta	ained using
DNA seq. vs. pro	otein seq. vs. Full genom	es. Phylogenetic analysis of	ancient DNA.	
Outcome - 5	Summarize the details a	bout phylogenetic analysis s	oftware.	K4
Suggested Re	adings :			
Page, R. D. M Blackwe	and Holmes, E.C. (199 IlScientific.	8) "Molecular Evolution A P	hylogenetic Approx	ach";
Mount, D. (20 Laborato	04) "Bioinformatics: Searry Press,New York.	luence and Genome Analysis	s"; Cold SpringHa	rbor
Baxevanis, A.	D. and Francis Ouellelle	tte, B.F., (2009). "Bioinform	atics- a PracticalG	uide to
theAnaly	sis of Genes and Proteir	s" 3rd Edition, Wiley India.		
Graur, D. and Associate	W-H Li. (2000) Fundam es.	entals of Molecular Evolutio	on" 2nd Edition,Sir	nauer
Patthy, L. (199	99) "Protein Evolution";	Blackwell Scientific.Pankhu	ırst,	
R.J.(1991) "Practical taxonomic	computing";		
Michael M. M New Yor	iyamoto, (2001) Phylog k	enetic Analysis Of DNA Seq	uences, OxfordPre	ess,
Philippe Leme Handboo	y, Marco Salemi and An k: A	ne-Mieke Vandamme (2009) "ThePhylogeneti	.C
Practical Appro	ach to Phylogenetic An	lly <mark>sis and Hyp</mark> othe <mark>s</mark> is Testin	g"; 2 nd Edition,Ca	ambridge
University Pres	s.			
Online Resour	ces:	A A		
1. https://ww	ww.britannica.com/scien	ce/phylogeny		
2. https://ww	ww.nature.com/scitable/	topicpage/reading-a-phyloge	enetic-tree-the-mea	ning-of-
41956/				
3. https://ev patterns/u	olution.berkeley.edu/evon	olution-101/the-history-of-lif es/	fe-looking-at-the-	
K1-Remember	K2-Understand	K3-Apply K4-Analyze K	5-Evaluate K6-C	Create
	I	Course designed	d by: Dr. M. Kart	hikeyan

	Course Outcome VS Programme Outcomes									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)		I (1)			5(3)	I (1)	I (1)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	-	L(1)	-	-	S(3)	L(1)	L(1)
CO2	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	L(1)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	1	-	L(1)	M(2)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	L(1)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	3	S(3)	L(1)	S(3)
W.A	3	3	2.8	2.2	2.2	2.4	1.8	2.4	1	2.4
\mathbf{V}										

S-Strong (3), M-Medium (2), L-Low (1)

ourse Ou	icome v	s r rogi	am spe	cilicoute	comes
	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S(3)	M(2)	S(3)	S(3)	S(3)
CO2	M(2)	S(3)	S(3)	S(3)	S(3)
CO3	L(1)	L(1)	M(2)	S(3)	S(3)
CO4	M(2)	S(3)	S(3)	S(3)	S(3)
CO5	M(2)	S(3)	S(3)	S(3)	S(3)
W. AV	2	2.4	2.8	3	3

Course Outcome Vs Program Specificoutcomes

S-Strong (3), M-Medium (2), L-Low (1)

Assignment & Seminar: Phylogeny and Phylogenomics

Write the difference between rooted and un-rooted trees.

- 1. Describe the character and distance based approaches.
- 2. Explain the role of Clustal W for phylogenetic analysis.
- 3. Define PHYLIP and its application.
- 4. Expand (a) UPGMA (b) NJ (c) Clustal W and (d) MEGA.
- 5. Give short note on evolutionary trace analysis.
- 6. How do you generate multiple datasets from the original input using bootstrapping?
- 7. Explain the importance of multiple sequence alignment for tree construction.
- 8. Discuss on Jackknife test.
- 9. Softwares for phylogenetic analysis

Program: M.Sc., Bioinformatics	Semester : II (2022 Onwards)
Course Title: Molecular Modeling and	Class Time: As per Time Table
Drug Design	
Subject Code: 502202	
Name of Course Teacher	Dr. Sanjeev Kumar Singh
Mobile: +91 - 9894429800	E-mail: sksingh@alagappauniversity.ac.i

Molecular Modeling and Drug Design

Course Brief:

The course depicts the basic theory of molecular modeling and drug design. It reviews a vast range of topics including the concept of molecular modeling; Quantum and Molecular Mechanics, *Ab initio* structure modeling and active site prediction, theories and to recognize drug like properties, computer molecular dynamics simulation and changes in conformations, pharmacophore, lead identification and *de novo* ligand design methods, molecular docking, QSAR, HTVS, Lipinski's rule, ADME properties, energy concepts, Bond structure and bending angles, finding new drug targets to treat diseases; drug discovery and development. It also discusses the recent advances and limitations of molecular modelling methods. This course serves as a basic introduction of molecular modeling to the students. As it covers a vast range of topics in molecular modeling, it could provide sound basic knowledge as well. **Teaching Methods**: The mode of teaching is based on the following learning activities:

- Lectures covering the theoretical part will be delivered using PowerPoint presentations.
- A set of laboratory exercises to analyze biological problems using softwares and tools to develop student's interests in scientific discovery.
- Case studies in informatics-based research.

Attendance: The students are expected to attend the classes regularly, since regular attendance is essential to gain academic achievement. As per the University norms, the students having a minimum scale of 70-75% attendance are only qualified to write their end-semester examinations.

Punctuality: Punctuality is the most important quality for the student to be followed and maintained to achieve success. Students who arrive late by 10 mins to the class without any vital reason will be marked absent in the attendance register. On the other hand, valid excuse including personal or medical emergency is acceptable, with prior consent by the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking practice and much more that will provide a wholesome enriched classroom experience. When students participate, they learn from one another and gain their knowledge better.

Submission of Assignment: Assignments are given to students in order to apply the concepts for deeper understanding of the subject. Therefore, each student will be allocated two assignments for the course, covering the entire topic. Students will be given deadline to submit the assignment by the course instructor and good preparation of assignment will help the students for their final exams.

Presentation of Seminar: Apart from the assignments, students are supposed to give an oral presentation during the class seminar hours in their assigned topic. The concerned instructor will encourage the participants to ask valid questions during seminar presentation in order to

put up their confidence levels and communication skills. In addition, students will be able to gain information and can be updated in their course.

Preparedness: At the end of every class, the concerned instructor conveys the students about the details that will be handled in the next class to increase the student's awareness related to the topics.

Academic Dishonesty: Academic dishonesty is a completely unacceptable mode of conduct and every student should be aware of this important aspect. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Depending upon the requirement of student's possibility, the course syllabus will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairperson.

Important dates: Scheduled dates for the various activities related to the course

CIA Test I	CIA Test II	Assignment	Seminar
As per Acad	emic Calendar	After 0	CIA Test I

Course Outline: Molecular Modeling and Drug Design

- Role of Bioinformatics in drug design, Target identification and validation, lead optimization and validation, Structure-based drug design and ligand based drug design.
- Concepts in Molecular Modeling: Introduction; Coordinate System; potential energy surfaces molecular graphics; Quantum mechanics; Molecular Mechanics: Features of molecular mechanics, force fields
- Bond structure and bending angles electrostatic, van der Waals and non-bonded interactions, hydrogen bonding, Inter and intramolecular interactions: Weak interactions in drug molecules; hydrogen bonding in molecular mechanics
- Homology modeling, concepts of homology modeling, secondary structure prediction methods: Threading, *ab initio* structure prediction Protein folding and model generation; analyzing secondary structures; Protein loop searching, loop generating methods, loop analysis.
- Molecular Dynamics using simple models; Molecular Dynamics with continuous potentials and at constant temperature and pressure; Time dependent properties; Solvent effects in Molecular Dynamics; Conformational changes in Molecular Dynamics.
- Structure and Ligand based Drug Design: Pharmacophore identification, methods to identify lead compounds, Molecular Docking, *De-novo* ligand design methods, Applications of 3D Database Searching in Molecular docking. Random Screening, Virtual Screening, HTVS, QSAR, Target identification and Validation.
- Receptorology: Drug-receptor interactions, receptor theories and drug action. Theories of enzyme inhibition and inactivation; Enzyme activation of drugs and prodrugs. Drug like molecules and theories associated with the recognition of drug like properties. Physical organic chemistry of drug- metabolism, drug deactivation and elimination; Phase-I and phase-II transformations; Concept of hard and soft drugs; Chemistry of ADME and toxicity properties of drugs.Lipinski rule.

More books for Reading and Referencing

Pharmacoinformatics and Drug Discovery Technologies: Theories and Applications **Tagelsir Mohamed Gasmelseid** Publisher: Idea Group, 2012. **ISBN: 978-1466603097**

Molecular Modelling for Beginners - Alan Hinchliffe Publisher: John Wiley & Sons Inc, 2008. ISBN: 978-0470513149

Molecular Modeling. Basic Principles and Applications - Hans-Dieter Höltje, Wolfgang Sippl, Didier Rognan, Gerd Folkers Publisher: Wiley-VCH, 2008. ISBN: 978-3527315680

Molecular Modeling Basics - Jan H. Jensen Publisher: CRC Press, 2010. ISBN 978-1420075267

Molecular Modeling and Simulation: An Interdisciplinary Guide - Tamar Schlick Publisher: Springer-Verlag New York, 2002. ISBN: 978-1441963505

Computational Chemistry and Molecular Modeling - K. I. Ramachandran, Gopakumar Deepa, Krishnan Namboori Publisher: Springer – Verlag Berlin Heidelberg. 2008. ISBN: 978-3540773023

Semester-II									
Core-VI	Course Code: 502202	Molecular Modeling and DrugDesign	Т	Credits: 5	Hours: 5				
		Unit – I							
Objective - 1	To let students development, fir	to understand the use of nding new targets to treat disc	information information information in the second s	atics in drug d chanism of drug	lesign and designing				
Introduction	to Molecular I	Modeling: Molecular Mode	eling and	d Pharmacoinfo	rmatics in				
Drug Desigr identification Outcome - 1	n, Phases of D and optimization The students we new drugs along	Drug Discovery, Target id a, finding of new drug target buld understand the process with identifying new target	entificati ts. and step and its v	ion and valida os for designing alidation	tion, lead				
		Unit – II							
Objective - 2	To understand th	ne concept of molecular mode	eling, me	echanics and inte	eractions				
concepts in graphics; Qu force fields; non-bonded interactions i and its impor Outcome - 2	antum mechanics Bond structure interactions, hydr n drug molecules tance in drug action The students work	s; Molecular Mechanics: F and bending angles – el rogen bonding, Inter and in ; hydrogen bonding in mole on, application of energy min ould be able to understand the polecular dynamics simulation	ectrostat ectrostat ntramole ccular me imization ne conce	of molecular n ic, van der W cular interaction echanics; Energ n. pts of Molecula	r K2				
	Widdenning and I		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
		Unit –III	5						
Objective - 3	To provide clear roleon different t	concepts on bond angle, bor ypes of bonds in interactions	nd stretcl	hing, bond dista	nce and				
Protein Str Secondary St for Structure refinement; S	ructure Prediction prediction; Prote structure validation	n, Homology modeling, Three in structural visualization; n tools; Ramachandran Plot.	Structure ading ar Geometr	are prediction ad <i>abinitio</i> meth y optimization	methods: od, Tools and Loop				
Outcome - 5	inactivation of e	nzymes drug deactivation	theory c		M2CIN5				
Unit –IV	mactivation of c		9						
Objective - 4	To study about p	protein structure prediction a	and conf	ormational char	nges				
	throughout the sir	mulation							
Structure and methods to Database Sea Descriptors a	nd Ligand Based identify lead con arching in Molecul nd its applications	I Drug Design: Pharmacop mpounds, Molecular Docki lar docking., Virtual Screening.	hore ide ng, <i>De-</i> ng, HTV	ntification and novo ligand de S, , QSAR and l	Mapping; esign, 3D Molecular				
Outcome - 4	Understand the i ligands	relationship between the strug	cture and	l activity of	K5				
		Unit-V							
Objective - 5	To provide brief inhibition and in	idea of receptor and recepto activation of enzyme, recepto	r-ligand or theorie	complex, es					
Receptorolog enzyme inhit Drug like pharmacoking and soft drug and antagonis Outcome - 5	gy: Drug-receptor pition and inactive molecules; Che etics; Phase-I and gs; Chemistry of A st. Describe the D	r interactions, receptor theor ation; Enzyme activation of emistry of drug- metabo phase-II transformations; Co ADME and toxicity propertion rug action mechanism	ries and drugs a olism, oncept of es of dr	drug action; Tl nd prodrugs. C Pharmacodynan hard ugs. Lipinski ru	neories of oncept of nics and le, agonist K2				
	D	0							

Suggested Readings :

- Leach, AR (2001) "Molecular Modeling Principles and Applications"; 2nd Edition, Prentice Hall, USA Schlick T, "Molecular Modeling and Simulation An Interdisciplinary Guide", Springer, Acc. No. 73052
- Doucet J. and Weber J. (1996). Computer-aided molecular design. London: Academic Press, 1st edition, ISBN0-12-221285-1
- Gundertofte K, (2000) "Molecular Modeling and Prediction of Bioactivity", Springer, ISBN-978-1-4613-6857-1.
- Jiang T. Xu Y. Zhang M. (2002). Current topics in computational molecular biology. Cambridge, Mass.: MITPress, 2nd edition, *ISBN*-10: 0262100924
- Schneider G. and So S. (2003). Adaptive systems in drug design. CRC press, 1st edition, *ISBN* 9781587060595
- Cramer CJ (2004) "Essentials of Computational Chemistry: Theories and Models", Wiley-Blackwell, ISBN-978-0470091821.
- Pirrung MC (2004) "Molecular Diversity and Combinatorial Chemistry: Principles and Applications", Elsevier, ISBN-0-08-044493-8.
- Bajorath JB (2004) "Chemoinformatics-Concepts, Methods, and Tools for Drug Discovery", Springer, ISBN 978-1-59259-802-1.
- Kukol A. (2008). Molecular modeling of proteins. Totowa, N.J.: Humana Press, 1st edition, ISBN 978-1-59745-177-2
- Ramachandran KI (2008) "Computational Chemistry and Molecular Modeling: Principles and Applications", Springer, ISBN- 978-3-540-77304-7.
- Hinchliffe (2008) "Molecular Modelling for Beginners"; Second Edition, Wiley-Blackwell, ISBN- 978-0470513149.
- Gilani HG, Samper KG and Haghi RK (2012) "Chemoinformatics: Advanced Control and Computational Techniques", CRC Press, ISBN-9781466559332.
- Bladon P and Hammond RB (2012), "Molecular Modelling: Computational Chemistry Demystified" RSCpublishing, ISBN: 978-1-84973-352-6.
- Silverman RB and Holladay MW (2014) "The Organic Chemistry of Drug Design and Drug Action", thirdedition, Elsevier, ISBN-978-0-12-38-2030-3.
- Czechtizky W and Hamley P (2016) "Small Molecule Medicinal Chemistry: Strategies and Technologies", John Wiley & Sons, ISBN-978-1-118-77160-0.
- Dastmalchi S. Hamzeh-Mivehroud M. and Babak Sokouti (2018). Quantitative Structure -ActivityRelationship: A Practical Approach. CRC Press. ISBN: 9780815362098
- Sehgal, A. Mirza H. Tahir R. A. Mir A. (2018). Quick Guideline for Computational Drug Design. BenthamScience. ISBN: 978-1-68108-603-3
- Hey-Hawkins E. Teixidor C. V. (2018). Boron-Based Compounds: Potential and Emerging Applications inMedicine. John Wiley & Sons. ISBN: 978-1-119-27558-9
- Gervasio F. L. Spiwok V. Mannhold R. (2019). Biomolecular Simulations in Structure-Based Drug Discovery. John Wiley & Sons. ISBN: 978-3-527-342655

Andricopulo A. D. and Ferreira L. L. G. (2019). Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design. Frontiers Media SA. ISBN: 978-2-88945-744-1

Online Resources:

1. https://www.sciencedirect.com/book/9780444626479/elementary-molecularquantum-mechanics

2. https://link.springer.com/book/9780792347927

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
		Course	e designed by	: Dr. Sanjeev I	Kumar Singh

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	L(1)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	L(1)
CO2	M(2)	-	L(1)	S(3)	S(3)	L(1)	M(2)	-	L(1)	L(1)
CO3	S(3)	S(3)	S(3)	L(1)	L(1)	M(2)	M(2)	L(1)	S(3)	M(2)
CO4	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	M(2)
CO5	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)
W.AV	2.6	1.6	2.6	2.6	2.4	2.2	2.6	1.4	2.6	1.4

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)
CO5	S(3)	M(2)	S(3)	S(3)	S(3)
W.AV	3	2.8	3	3	2.8

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar – Molecular Modeling and Drug Design

- 1. Role of Bioinformatics in drug design
- 2. Structure Based Drug Design
- 3. Coordinate System
- 4. Quantum Mechanics
- 5. Energy concept and its importance in drug action
- 6. Ab initio method of structure prediction
- 7. Solvent effects in Molecular Dynamics
- 8. Application of 3D Database searching in Molecular Docking
- 9. Receptor theories and drug action
- 10. Concept of Hard and Soft drugs

Computational Diology						
Program: M.Sc., Bioinformatics	Semester : II (2022 Onwards)					
Course Title: Computational Biology	Class Time: As per Time Table					
Subject Code: 502203						
Name of Course Teacher	Dr. P. Boomi					
Moble:+91 9486031423	E-mail:boomip@alagappauniversity.ac.in					

Computational Biology

Course Brief:

The course will cover topics of Computational Biology and Bioinformatics. Students will be introduced to computational modelling of cellular processes and some techniques for analysing these models to develop student research skills in the area of computational biology. It helps to develop working knowledge of computational techniques and their applications to biomedical research. Students will be empowered with fundamental new understandings of biological mechanisms related to the field of biological and medical sciences. Computational techniques are needed to analyze genome sequences, protein structures, metabolic and regulatory pathways, evolutionary patterns and the genetic basis of diseases. Students will also be introduced to some key problems in bioinformatics, the models used to formally describe these problems, and algorithmic approaches used to solve them. This course is designed to benefit students to understand the principles of analyzing biological data, building models and testing hypotheses related to computational and experimental works.

Teaching Methods: The mode of teaching is based on the following learning activities:

- Lectures covering the theoretical part will be delivered using PowerPoint presentations.
- A set of laboratory exercises to analyze biological problems using softwares andtools to develop student's interests in scientific discovery.
- Case studies in informatics-based research.

Attendance: The students are expected to attend the classes regularly, since regular attendance is essential to gain academic achievement. As per the University norms, the students having a minimum scale of 70-75% attendance are only qualified to write their end-semester examinations.

Punctuality: Punctuality is the most important quality for the student to be followed and maintained to achieve success. Students who arrive late by 10 mins to the class without any vital reason will be marked absent in the attendance register. On the other hand, valid excuse including personal or medical emergency is acceptable, with prior consent by the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking practice and much more that will provide a wholesome enriched classroom experience. When students participate, they learn from one another and gain their knowledge better.

Submission of Assignment: Assignments are given to students in order to apply the concepts for deeper understanding of the subject. Therefore, each student will be allocated two assignments for the course, covering the entire topic. Students will be given deadline to submit the assignment by the course instructor and good preparation of assignment will help the students for their final exams.

Presentation of Seminar: Apart from the assignments, students are supposed to give an oral presentation during the class seminar hours in their assigned topic. The concerned instructor will encourage the participants to ask valid questions during seminar presentation in order to put up their confidence levels and communication skills. In addition, students will be able to gain information and can be updated in their course.

Preparedness: At the end of every class, the concerned instructor conveys the students about the details that will be handled in the next class to increase the student's awareness related to the topics.

Academic Dishonesty: Academic dishonesty is a completely unacceptable mode of conduct and every student should be aware of this important aspect. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Depending upon the requirement of student's possibility, the course syllabus will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairperson.

Important dates: Scheduled dates for the various activities related to the course

CIA Test I	CIA Test II	Assignment	Seminar
As per Academic Calendar		After CIA Test I	

Course Outline: Core: Computational Biology

- String algorithms are a traditional area of study in computer science in recent yearsalgorithms in bioinformatics – sequences algorithms on strings, trees and protein sequences can be represented as strings over finite.
- Shortest path algorithm-Hamiltonian Path for graph representation-Maximum flow.
- Comparative genomics: Orthologues and paralogues, xenologues (horizontal gene transfer); Non-orthologous gene displacement; Analogues; Orthologue identification by BLAST and reciprocal best hit.
- Use of comparative genomics in gene annotation, and function prediction; Phylogenetic foot printing; Gene order.
- Details of Needleman Wunsch and Smith- Waterman algorithms-BLAST and FASTA applications.
- Web based servers and softwares for genome analysis: Ensembl, NCSC genome browser, NCBI genome.
- Hierarchical alignment with worked out examples of substitution matrices- PAM substitution matrices BLOSUM substitution matrices.
- Hidden Markov models and application to analyze of protein and genome sequences.
- Methods of representing biological molecules geometrical analyses Protein Structure Comparison and Classification- different classes of Protein interactions.

More books for Reading and Referencing

Understanding Bioinformatics - Marketa Zvelebil, Jeremy Baum Publisher: Garland Science, First edition, 2007. (ISBN: 978-08-153-4024-9) Bioinformatics and Functional Genomics - Jonathan Pevsner Publisher: Wiley-Blackwell, Third edition, 2015. (ISBN: 978-11-185-8178-0) Practical Computing for Biologists - Steven Haddock, Casey Dunn Publisher: Sinauer Associates, Inc.; First edition, 2010. (ISBN: 978-08-789-3391-4) Introduction to Computational Biology: An Evolutional Approach - Bernhard Haubold, Thomas Wiehe Publisher: Springer (sie) (2008). (ISBN: 978-37-643-7387-0) Algorithms on strings, trees, and sequences: computer science and computational biology- Dan Gusfield Publisher: Cambridge University Press, 1997. (ISBN: 978-05-215-8519-4) Bioinformatics: A biologist's guide to biocomputing and the internet -Stuart M. Brown Publisher: Eaton Publishing, 2000. (ISBN: 188129918X, 9781881299189)

Semester-II								
Core-VII	CourseCode 502203	Computational Biology	Т	Credits:5	Hours:5			
		Unit-I		1	1			
Objective - 1 To provide students with the basic knowledge of biosimilar, computational biology and their advances of synthetic biology								
Biosimilars: Int	roduction to bio	similars, Definition, Example	s of	Biosimilars- G	enetically			
engineered pro	ducts of biosin	milars, Molecular Complex	ity o	of biosimilars.	Critical			
manufacturing p	arameters of bios	similars and Challenges-Modif	icatio	ns linked to the	e process,			
conversion and	formulation. Co	oncept of expression cassette	and	vector, Host	cell and			
expression syste	m. Non Clinical	l and Clinical Aspects of Bio	osimi	lars.				
Preclinical appro	ach and Clinical a	approach.						
Outcome - 1	Students will of	btain basic knowledge about the	e bios	imilarand can	K2			
	learn about clin	ical approach of biosimilar						
		Unit-II						
Objective - 2	To facilitate the	e students to attain skills in bas	ic cor	nnutationalbiolo	ow that is			
objective 2	essential for var	rious biomedical applications		inputationatoroit	gy that is			
Introduction to	Computational	Biology: Introduction to Com	nutatio	onal Biology [.] N	ature and			
scope of Comput	ational Biology	Alignment definition Pairwise	senile	ence alignment	biological			
interpretation of	the alignment pr	oblem scoring alignment Glo	bal ali	onment local a	lionment			
overlan alignmer	nt, banded alignm	ent normalized local alignment	nt. m	aximizing Vs m	inimizing			
score. similarity	and distance r	neasures, PAM matrices, BL	OSU	M matrices. co	omparison			
between PAM ar	d BLOSUM mat	rices, Application of substitutio	n mat	rices	r			
Outcome - 2	Students will o	ain the how to alignment the	seque	ence analysis	K7 & K3			
Outcome - 2	and apply score	matrix using computational an	proac	h	K2 & KJ			
	and apply score	Unit-III	proac					
Objective - 3	This course wil	l give the various methods of Se	eallen	ce matching				
Pairwise seque	nce matching	analysis: Sequence m	atchir	ng method_D	ot plot			
visualization met	hod Dynamic pr	ogramming method Word met	hod	Ravesian metho	d piot			
progressive meth	od Markov chair	model Hidden Markov Model	ls and	Kernal methods	а, s			
Outcome 3	Student will	obtain basic knowledge abc	uit th	e biosimilar	K3			
Outcome - 5	sequence match	ing analysis and dynamic prog	ramm	ingmethods	KJ			
	sequence mater	ing unarysis and cynamic prog		inginetious.				
		Unit-IV	·					
Objective - 4	To give the va	arious methods of Sequence n	natch	ing and Multip	le			
	sequence align	ment.						
Computational	Sequences and	Maps: General ideas of s	seque	nce alignment,	multiple			
sequence alignm	ent, Restriction	map-Graph, Interval graphs a	nd M	easuring fragm	ent sizes.			
Multiple maps-	double design	problems, reflection, overlag	p eq	uivalence, ove	rlap size			
equivalence, rest	triction map and	border block graph, Cassettle	e tran	sformation of i	restriction			
map. Vector and	plasmid design.							
Outcome - 4	Discusse and ca	alsify the sequence alignment			K4			
		Unit-V						
Objective -5	To learn about a	advanced computational biology	y usin	g syntheticbiolo	ogy and			
	quantum mecha	nnics.						
Advances of Co	mputational Bio	logy: Synthetic biology- Ethic	al iss	ues of Synthetic	: Biology,			
Computational S	ynthetic biology	, Codon optimization, AND	gate a	and OR gate in	biology,			
Operons, Switch	es and clocks,	Re-pressilator. Computationa	l Qu	antum Mechar	nics- One			
electron atoms, F	olyelectron atom	s and molecules, Molecular or	oitals,	Hartree-Fock H	Equations,			
Molecular Prope	rties using ab ini	tio methods, Semi-empirical m	ethod	ls, Huckel Theor	ry.			
Outcome -5	Develop the	knowledge in advanced	co	mputational	K5			
	biology using s	ynthetic biology and quantum n	necha	nics				

Suggested Readings:

- S. Aluru, (2005) "Handbook of Computational Molecular Biology"; Publisher CRCPress.
- C. Voigt, (2011) "Synthetic Biology: Methods for part/device characterization and chassis engineering" Academic Press.
- J L. Prugnaud, J H.Trouvin, (2012) "Biosimilars: A New Generation of Biologics";Publisher Springer Science & Business Media.
- M.S. Waterman, (1995) "Introduction to Computational Biology: Maps, Sequences and Genomes"; Publisher CRC Press.
- K.I. Ramachandran, G. Deepa, K. Namboori, (2005) "Computational Chemistry and Molecular Modeling: Principles and Applications"; Springer.
- B. Haubold, T. Wiehe, (2006) "Introduction to Computational Biology: An Evolutionary Approach"; Publisher Springer Science & Business Media.
- K. Najarian, S. Najarian, S. Gharibzadeh, C.N. Eichelberger, (2009) "Systems Biologyand B ioinformatics: A Computational Approach"; Publisher CRC Press.
- C. Voigt, (2011). "Synthetic Biology, Part B: Computer Aided Design and DNA Assembly. Meth ods in enzymology"; Elsevier Science.
- H. J. Gutka, H.Yang, S. Kakar, (2018) "Biosimilars: Regulatory, Clinical, and Biopharmaceutical Development"; Publisher Springer.

Online Resources:

- 1. https://ocw.mit.edu/courses/7-91j-foundations-of-computational-and-systems-biology-spring-2014/
- 2. https://www.oreilly.com/library/view/biobuilder/9781491907504/ch01.html

K1-Remember	K2-Understand	K3-Apply	K3-Apply K4-Analyze		K6-Create
	22	AGAPPA UNIV	Course desig	hned by : Dr.P.	Boomi

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	L(1)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)	M(2)
CO2	M(2)	M(2)	L(1)	S(3)	S(3)	L(1)	M(2)	M(2)	L(1)	M(2)
CO3	S(3)	S(3)	S(3)	L(1)	L(1)	M(2)	M(2)	M(2)	S(3)	M(2)
CO4	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	M(2)
CO5	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)
W.AV	2.6	2.2	2.6	2.6	2.4	2.2	2.6	2	2.6	2

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)
CO5	S(3)	M(2)	S(3)	S(3)	S(3)
W.AV	3	2.8	3	3	2.8

Course Outcome VS Programme Specific Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar – Computational Biology

- 1. String operation and classification of algorithms
- 2. Write down the difference of PAM250 and BIOSSM62 matrix.
- 3. List out the hierarchical classifications of proteins.
- 4. Hidden Markov models and its application
- 5. Use of comparative genomics in drug discovery programs.
- 6. Protein Interaction analysis
- 7. Write a note on Sequence pattern representations.
- 8. How will you predict gene using Fourier analysis.
- 9. Describe the statistics to estimate significance of an alignment.
- 10. Briefly explain the dynamic programming for multiple sequence alignment.

Program: M.Sc.,	Semester: II (2022 Onwards)
Course Title and Code: Programming	Class Time: As per Time Table
in Scripting Languages (PYTHON,	
PERL & R)	
Subject Code: (502204)	
Name of the Course Teacher	Dr. RM. Vidhyavathi
Mobile: +91 9486031423	E-mail:vidhyavthurm@alagappauniversity.ac.in

Programming in Scripting Languages (PYTHON, PERL & R)

Course Brief:

Perl is a general-purpose programming language originally developed for text manipulation and now used for a wide range of tasks including system administration, web development, network programming, GUI development and more.

Python is a language with a simple syntax, and a powerful set of libraries. It is an interpreted language, with a rich programming environment, including a robust debugger and profiler. While it is easy for beginners to learn, it is widely used in many scientific areas for data exploration. This course is an introduction to the Python programming language for students without prior programming experience. We cover data types, control flow, object-oriented programming, and graphical user interface- driven applications. The examples and problems used in this course are drawn from diverse areas such as text processing, simple graphics creation and image manipulation, HTML and web programming, and genomics.

R is rapidly becoming the leading programming language in statistics and data science. R programming builds the proficiency in using R programming language for statistical computing and graphics. R, a language and environment, is gaining popularity in getting insight in complex data. The business analyst and other professionals dealing in large amount of data can derive results using the ready-made functions available in R.

Teaching Methods: The course will be used on the basis of the following teaching and learning methods:

- Lectures covering the theoretical part using PowerPoint presentations
- Case studies
- Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class/Lab Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of thetopics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar		
As per Acad	emic Calendar	After CIA Test-I			

Course Outline: Core: Programming in Scripting Languages (PYTHON, PERL & R)

- Concepts about Regular Expressions, Simple Uses of Regular Expressions, Patterns, More on the Matching Operator, Substitutions, The split and join Functions.
- Object oriented Perl consist-Introduction to modules and Creating Objects.
- The BioPerl keeps Installation procedures, Architecture and that uses.
- Conceptual introduction: installing Python, basic syntax, interactive shell, editing, saving, and running a script.
- The concept of data types; variables, assignments; immutable variables; numerical types; arithmetic operators and expressions; comments in the program; understanding error messages.
- Conditions, Boolean logic, logical operators; ranges; Control statements: if-else, loops (for, while); short-circuit (lazy) evaluation.
- String manipulations: subscript operator, indexing, slicing a string; strings and number system: converting strings to numbers and vice versa. Binary, octal, hexadecimal numbers.
- Understand interpreter and compilers: CPython, PyPy, Cython.
- See demonstration of IDE's: IDLE, IPython, IPython Notebook, hosted environments.
- Clear understanding of Statistical programming and R environment
- In-depth knowledge of basic features, functions, operators available with R
- Comprehensive information about programming statistical graphics
- Ways of using simulation and numerical optimization

- Extract data from R objects, perform reading and writing of Data, and handle databases
- Use subscripting, character manipulation, and reshaping of data
- Find probability, distributions, regression and correlation
- Significance of sample size and its calculation
- Advance data handling technique

More books for Reading and Referencing

MySQL and Perl for the Web, Paul DuBois, **ISBN-10**: 0735710546, Wynand S. Verwoerd; 2001 **ISBN**: 978-87-403-0251-6.

Programming the Perl DBI, By Tim Bunce, Alligator Descartes and Publisher: O'Reilly Media, 2000 **ISBN**: 978-1-56592-699-8, | ISBN 10: 1-56592-699-4.

Developing Web Applications with Apache, MySQL, memcached, and Perl, Patrick Galbraith, 2009 **ISBN**: 978-0-470-41464-4.

The Fundamentals of Python: First Programs- Kenneth A. Lambert, Cengage Learning, 2011. **ISBN:** 978-1111822705.

R Programming for Bioinformatics, Robert Gentleman, CRC Press,2008, **ISBN:** 1420063685, 9781420063684

Semester-II							
Core-VIII	Course Code 502204	Programming in Scripting Languages (PYTHON, PERL & R)	Т	Credits:5	Hours:5		
		Unit-I					
Objective	- 1 To introduce languages.	students to pros and cons of scripting v	s. con	npiledprogra	amming		
PERL: Sca	alar data, Numbe	rs, Strings, Variables, Operators, Hiera	urchy	of operators	s, Variable		
interpolatio	n, Basic I/O, Lis	sts and Arrays: Literal Representation,	Varia	ables, Array	Operators		
and Function	ons, Scalar and L	ist Context, Control Structures: Stater	nent I	Blocks, The	If control		
structure, V	While control stru	cture, Hashes, Hash Functions, Use of	f Hasł	nes, Pointers	, Database		
Connection	s and Database O	perations.					
Outcome - 1	I Illustrate the with condition	basics of Perl and Python to develop py onal controls and loops.	ythonp	programs	K2		
	1	Unit-II					
Objective	- 2 To give stud and it's rich	lents a thorough understanding of the H set of libraries.	Pythor	n programm	inglanguage		
Introductio	on to Python:]	Python interpreter and interactive mo	de, va	alues and c	lata types,		
variables,	expressions, stat	ements, tuple assignment, precedence	e of	operators,	comments,		
modules an	d functions, funct	tion definition and use, flow of execution	n, para	ameters and	arguments,		
Control Fl	ow, Functions: (Conditionals: Boolean values and operative conditionals and operative conditionals and operative conditional set of the s	ators,	if, if- else,	if-elif-else,		
Iteration: st	tate, while, for, b	reak, continue, pass, Fruitful Function	s: retu	urn values, p	barameters,		
local and g	global scope, fun	ction composition, recursion, Strings:	string	g slices, im	mutability,		
string funct	ions and methods	, string module, Lists as arrays.					
Outcome - 2	2 Understand programming	the pros and cons on scripting languag g languages (at a high level)	es vs.	classical	K2		
		Unit-III					
Objective	- 3 To expose str application d	udents to applications where Python prog evelopment, scripting, systems administ	ramm ration	ning is effect).	ive(e.g.		
Functions (Subroutines)in F	Ython: Function Definition, Calling a F	unctio	on, Passing	Parameters,		
Local Varia	bles, Returning V	alues, Special Variables and its Types, F	File ha	undle Specia	l Variables,		
Local and G	lobal Special Van	riables, Regular Expressions: Concepts	s Abou	ut Regular H	Expressions,		
Simple Use	s of Regular Ex	pressions, Patterns Matching, Match	Opera	tor, Simple	Matching,		
Literal Mat	ching, The Spli	t and Join Functions, Substituting,	Splitti	ng, Quanti	fiers, Meta		
characters, A	Assertions, Charao	cter Classes, Alternatives, Transliteration	1.				
Outcome - 3	3 Relate Pytho	n features as a data analysis tool			K4		
		Unit-IV			l		
Objective -	4 Recognize si	milarities and common characteristics o	f prog	ramminglar	nguages.		
Python-Lis	sts, Tuples, an	d Dictionaries: Lists: operations,	slices	, methods,	loop,		
mutability,	aliasing, clonin	g, parameters, Tuples: assignment, t	uple	as return v	value,		
Dictionarie	es: operations and	l methods, advanced list processing, list	comp	rehension, I	llustrative		
programs:	selection sort, in	sertion sort, mergesort. Files, Modules	s, and	Packages:	Files and		
exception:	text files, reading	g and writing files, format operator, com	mand	line argum	ents, errors		
and exception	ions, handling ex	ceptions, modules, packages. Graph Al	lgorith	ıms, Balanc	ed Search		
Tree, Gree	dy Algorithms, S	tack and Queue, String or	-	<i>,</i>			
Pattern Mat	ching Algorithms	3					
Outcome - 4	1 Explore data	a-sets to create testable hypotheses and	l iden	tifv	K4		
	appropriate s	statistical tests.		5			

	Unit-V	
Objective - 5	Identify appropriate statistical methods for the data or problems and co	nduct their
	own analysis using the R environment	
Introduction	to R-Programming: Introduction R Nults and Bolts (I), R Nults and	Bolts (II),
Getting Data	In and Out of R, Control Structures and Functions, Loop Function	ions, Data
Manipulation,	String Operations, Packaging, Debugging and Object Oriented Program	nming,
Data Visualiza	tion, Clustering, Regression and Classification, Data Analytics.	
Outcome - 5	Create and edit visualizations with R.	K6
Suggested Rea	dings:	
Perl Larry	Wall, Tom Christiansen, & Randal Schwartz, (2012) "Programming F	Perl", O-
Keilly,	Fourth Edition.	•
Hans Petter Science	e & Business Media.	pringer
Seema Ach	arya, (2018), "Data Analytics Using R", McGraw Hill Education, First e	dition.
David	Till, (1996),"Teach Yourself Perl 5 in 21 days ", Sams Publishing, Secor	nd
Edition	l.	
Tom Christ	tiansen & Nathan Torkington, (1998),"Perl Cookbook", O'Reilly Me	edia First
Editior	1.	
Kaladhar D	SVGK, (2014),"Basics in PERL and BioPERL", GRINVerlag.	
Jeff Chang, and Co	, Brad Chapman, Iddo Friedberg, Thomas Hamelryck, (2017),"Biopytokok".	thonTutorial
Robert Sed	gewick, Kevin Wayne, Robert Dondero, (2016), "Introduction to Progra	mmingin
Python	: An Inter-disciplinary Approach", Pearson India Education Services Pv	t. Ltd.
Timothy A.	Budd, (2015) "Exploring Python", Mc-Graw Hill Education (India) Priv	vate Ltd.
Guido	van Rossum and Fred L. Drake Jr. (2011), "An Introduction to Python –	Revised
andupo	lated for Python 3.2", Network Theory Ltd.	
SandipRaks	shit, (2017) "R Programming for Beginners", McGraw Hill Education, F	irstEdition.
Jared J	P. Lander, (2018) "R for Everyone: Advanced Analytics and Graphic	:S``,
Online Rec		
Online Kes	ources:	
1. https://w	ww.greenteapress.com/thinkpython/thinkpython.pdf	
2. http://ndl	.ethernet.edu.et/bitstream/123456789/26985/1/Larry%20Wall.pdf	
3. https://w	eb.itu.edu.tr/~tokerem/The Book of R.pdf	(Cuanta
л <i>1-кететder</i>	AZ-Understand AJ-Apply A4-Analyze AJ-Evaluate A	v-Create

Course of	designed	oy: Dr.RM.	.Vidhyavathi
-----------	----------	------------	--------------

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO2	S(3)	S(3)	S(3)	M(2)	M(2)	L(1)	L(1)	L(1)	M(2)	M(2)
CO3	S(3)	M(2)	S(3)	M(2)	M(2)	L(1)	L(1)	L(1)	M(2)	M(2)
CO4	S(3)	M(2)	S(3)	M(2)	M(2)	L(1)	L(1)	L(1)	M(2)	L(1)
CO5	S(3)	S(3)	S(3)	S(3)	L(1)	L(1)	L(1)	L(1)	L(1)	L(1)
W.AV	3	2.6	3	2.2	1.9	1.4	1.2	1.2	1.8	1.6

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	L(1)	M(2)
CO2	S(3)	M(2)	L(1)	S(3)	S(3)
CO3	S(3)	M(2)	L(1)	L(1)	L(1)
CO4	S(3)	M(2)	L(1)	L(1)	M(2)
CO5	S(3)	L(1)	L(1)	L(1)	M(2)
W.AV	3	2	1.2	1.4	2

Course Outcome VS Programme Specific Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar Programming in Scripting Languages (PYTHON, PERL & R)

- 1. Decision making process in PERL programming.
- 2. Illustrates Regular Expressions with an example.
- 3. Discuss in detail about CGI Programming.
- 4. Describe about Database Manipulation.
- 5. Program to string processing in sub-routines.
- 6. Convert a DNA fast a file to RNA fasta file (using File Handling).
- 7. CGI-Perl program to submit a DNA sequence and validate the sequence.
- 8. CGI-Perl program to perform the Translation process for user given sequence.
- 9. Types of Operators in python Programming with an Example.
- 10. Chained conditional (if-elif-else), state, while, for, break, continue, pass, Fruitful.
- 11. Tuple assignment, tuple as return value.
- 12. Files and exception handling and its Packages.
- 13. Database search using Biopython.
- 14. Debugging and Object Oriented Programming, Loop Functions, Data Analytics.
- 15. Structures and Functions, Loop Functions of R.

Program: M.Sc.,	Semester : II (2022 Onwards)		
Course Title: Lab – II Molecular	Class Time: As per Time Table		
Biology and Biochemical			
Techniques Subject Code: 502205			
Name of Course Teacher	Dr. M. Karthikeyan		
	Dr. J. Joseph Sahayarayan		
Moble: +91 9486981874	E-mail: karthikeyanm@alagappauniversity.ac.in		
$+91\ 9047564087$	josephj@alagappauniversity.ac.in		

Lab-II Molecular Biology and Biochemical Techniques

Course Brief:

This course begins with a review of basic bio-analytical technique and an introduction to general terminologies along with their theory, working principles, common instrumentation and possible applications which will be equally beneficial to various scientific areas including, life science, chemical science, material science and environmental science.

Understanding of molecular structure & function is of central importance to students undertaking a major biological or chemical field. This course focuses on concepts of DNA/RNA, protein, lipid & carbohydrate comprehending the aspects from structure to function. Some content and assignments are based on current literature describing recent DNA, protein structures and how structure can be utilized to conclude the function of it. Laboratory work will emphasize the techniques required to analyze biomolecules. Students will integrate theoretical knowledge with experimental data.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Video-conferencing for lectures that will be sought from experts belonging to overseas reputed institutions
- Case-studies and Review questions

Attendance: Having good attendance record marks the student's sincerity and has an

				•
$< 50 \text{ Marks in all} \qquad 50 < \text{ Your Marks} < 59 \qquad 60 < \text{ Your Marks} < 75 \qquad \text{Your Marks} \ge$	< 50 Marks in all	ks in all $50 < $ Your Marks < 59	60 < Your Marks < 75	Your Marks \geq 75

overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar	
As per Academic Calendar		After CIA Test-I		

Course Outline: Lab-II: Molecular Biology and Biochemical Techniques

- 1. Collect samples from environment.
- 2. Extract and purify DNA from collected samples.
- 3. Use PCR to amplify specific regions from the chloroplast or mitochondrial DNA that are short but highly variable.
- 4. Analyze the proteins by using various Chromatographic methods.
- 5. Analyze PCR product by agarose-gel electrophoresis.
- 6. Use BLAST to identify sequences in database to taxonomically assign the sample.
- 7. PCR using primers specific for identification of species.
- 8. Construct genomic DNA libraries from wild-type.
- 9. Isolate plasmid DNA from surviving clones and obtain DNA sequence to identify the mutated gene.
- 10. Use bioinformatics to determine sequence differences between wild-type and mutant strains and compare to sequences recovered by functional complementation.

More books for Reading and Referencing:

Biochemical Calculations Paperback by Irwin H. Segel, 2010

ISBN: 10: 8126526432; ISBN: 13: 978-8126526437

Laboratory Manual of Biochemistry: Methods and Techniques by R. S. Sengar, 2014

ISBN: 10: 9383305029

Student Solutions Manual for Molecular Cell Biology by Harvey Lodish, 2012

ISBN: 13: 978-1464102301

Semester- II						
Core-IX	Course Code:	Lab-II: Molecular Biology and	Р	Credits:3	Hours:6	
	502205	iochemical Techniques				
		Unit – I		· · ·		
Obiective - 1	Objective - 1 Carryout various types of practical laboratory work (chemical biochemical and					
	molecular genetics) in a safe way by means of oral and written laboratory				horatory	
	instructions and be able to analyze interpret and present the results with				ilts with	
	theoretical background informs of different laboratory reports					
Annroachast	BiochemicalTeel	niques: Bio safety rules and regul	ations a	nd Good La	boratory	
Practice (GLP) Material	safety Data sheets (M	ISDS) E	reparation	of	
Reagents but	fers nHAnalysis V	Various Centrifugation methods Qua	lity and	Quantity an	alveie of	
nucleicacide	by Spectro photon	eter Bio Photometer nanodron	my and	Quality and	alysis of	
I our 'and E	by Specifo photon Prodford'smothods	neter, Bio Thotometer, nanourop. Q	uantino		tenns by	
Lowry sailu r	Damanakar tha	uningial as of as ad laborate my anastic		aioa of	IZ1	
Outcome - 1	kennember ute	principles of good laboratory practic	es ando	asies of	NI	
	biochemical tec	Unit II				
Obiostivo 2			1	(1 ')	1	
Objective - 2	Data interpreta	ation, including standard curve interp	olation ((graphing)ai	nd	
	determining m	olecular weight of an unknown prote	ein or ge	notype.		
Isolation and	l Separation Tech	niques: Cell culture, Isolation and	Separati	on of Genor	micDNA	
fromplants/ h	uman /microorgani	sms; Plasmids isolationfrom microo	rganism	s; RNA fro	m cells;	
Agarose Gel I	Electrophoresis; Iso	plation, separation and analysis of Pr	oteins b	y Native- PA	AGE and	
SDS-PAGE.						
Outcome - 2	Understand the	process of DNA isolation and separa	tiontech	niques	K2	
		Unit III		•		
Objective - 3	Genetic engine	ering in microorganisms (e.g. bacter	ia veast) DNA anal	veie	
Objective - 5	including DNA	extraction use of restriction enzyme	s yeast		y 515,	
A man life a dia	n of Conog and M	alaanlar Markarra Cara arralifiaati	ion and	Cana anima ta	al	
	n of Genes and M	Olecular Markers: Gene amplificati	$\frac{1}{1}$ is $\frac{1}{1}$	Screening te	cnniques:	
Primer Desig	n, PCK; Kealtime	PCR(RIGPCR) /analysis, Blotting te	cnnique	s: Southern,	Northern	
and western I	Blots; BioProbe (D	emonstration) and Radio active probe	e (Theory	<i>(</i>). Molecula	r Markers	
by RFLP, AF	LP,RAPDmethods	(Demo).			170	
Outcome - 3	Acquire the kr	nowledge of gene amplification and b	lottingn	nethods	K3	
		Unit – IV				
Objective - 4	Students will	acquire knowledge about various chr	omatogi	aphictechni	ques.	
				1 7 7	1	
	aphy Techniques	: Chromatography: Partition Chro	matogra	phy, lon E	xchange	
Chromatogra	ohy, Gel filtration	Chromatography, Affinity Chroma	tography	, HPLC an	d FPLC	
(Demonstration	bromatography	amino acids/compounds by Paper C	nromate	ograpny,		
Outcome 4	Δ nalyze th	e basic principles and	signific	ance of	K/	
Outcome - 4	chromatograp	hy and its types	Significa	111 CC 01	114	
	61					
Obiestiese 5	Mionogoony	$U \Pi I - V$		manta		
Objective - 5 When scopy procedures and identification of central components.						
Nucroscopes and immune techniques: Microscopes and immune techniques: Visualization of						
cells and subcellular components by lightmicroscopy, resolving powers of different microscopes,						
microscopy of living cells, scanning and transmission microscopes. Antigen and Antibody						
preparation, immune precipitation, Immuno histochemistry, ELISA & its applications, Flow				ns, Flow		
cytometry and Immunofluores cence microscopy, Confocal microscopy and FISH (Theory).					y).	
Outcome - 5	Evaluate the a	intigen-antibody interactions through	n immun	etechniques	K5	
	and microscop	bic analysis				
Suggested Readings:

- John M. Walker and Ralph Rapley,(2002)"Molecular Biology and Biotechnology";University of Hertfordshire, Hatfield,UK, Fourth Edition
- Bansal, M.P.(2013)"Molecular Biology and Biotechnology":Basic Experimental Protocols, NewDelhi:TERI.

R.H.Burdon, P.H.Van Knippenberg,(1990)"Laboratory techniques in Biochemistry and Mol ecular biology"; Elsevier Amsterdam. NewYork.Oxford, Second Edition, volume 8.

Rodney and Royer, (2004)"Modern Experimental Biochemistry";Pearson education, India. Hans-WalterHeldt, (2004)"Plant Biochemistry";Elsevier Academic Press, Third edition.

James M. Miller, (2005) "Chromatography: Concepts and Contrasts"; Wiley- Interscience, Second Edition.

Richard I. Gumport, Jeremy M.Berg, Nancy Counts Gerber, (2006) "Biochemistry- A Student Companion"; I.K. International Pvt, Ltd. Sixthedition.

Eisenthal, R. and Danson, M.J. (2006) "Enzymeassays"; Oxford University Press. DonaldVoet, JudithG.Voet, (2010) "Biochemistry"; John Wiley & Sons Inc;4th Edition.

Keith Wilson, John Walker, (2010)" Principles and Techniques of Biochemistry and Molecula r Biology"; Cambridge University Press;7th Edition.

Michael R.Green, Joseph Sambrook, (2012) "Molecular cloning: a laboratory manual"; Cold Spring Harbor, N.Y.:Cold Spring Harbor Laboratory Press,4th Edition.

Michael M. Cox, Michael O' Donnell, Jennifer Duodena, (2015) "Molecular Biology: Principles and Practice Hardcover"; WH Freeman; 1st Edition.

DavidL. Nelson, Michael, (2017) "Lehninger Principles of Biochemistry:International Edition, W H Freeman, 7th Edition, ISBN:9781319108243,1319108245.

Sambrook, J., Fritsch, E., & Maniatis, T. (2012). Molecularcloning (5th ed.). Cold Spring Harbor: Cold Spring Harbor LaboratoryPress.

Wilson, K., & Walker, J. (2007). Principles and techniques of biochemistry and molecular biology (5th ed.).Cambridge: Cambridge University Press.

Online Resources:

1. https://link.springer.com/book/10.1007/978-3-642-56968-5

2. https://link.springer.com/book/10.1007/978-94-010-9363-7

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
			Course desig	ned by: Dr. M	. Karthikeyan

Course Outcome VS Programme Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	M(2)							
CO2	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	L(1)	S(3)	M(2)	S(3)
CO3	S(3)	M(2)	S(3)	S(3)	M(2)	S(3)	L(1)	L(1)	L(1)	M(2)
CO4	S(3)	M(2)	S(3)	M(2)	L(1)	S(3)	S(3)	S(3)	M(2)	S(3)
CO5	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)	S(3)	M(2)	L(1)	M(2)
W. AV	3	2.6	2.6	2.4	2.2	2.8	2.2	2.4	1.6	2.4

S-Strong (3), M-Medium (2), L-Low (1)

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	S(3)	S(3)	M(2)	M(2)
CO2	M(2)	S(3)	S(3)	M(2)	L(1)
CO3	S(3)	M(2)	M(2)	M(2)	L(1)
CO4	M(2)	L(1)	L(1)	S(3)	M(2)
CO5	L(1)	M(2)	M(2)	M(2)	L(1)
W. AV	1.8	2.2	2.2	2.2	1.4

Course Outcome Vs Program Specific outcomes

S-Strong (3), M-Medium (2), L-Low (1)

Assignment, Seminar & Practicals – Biochemical and Molecular Biology Techniques

- 1. Quantification of proteins by Lowry's and Bradford's methods.
- 2. Preparation of reagents buffers and adjust pH.
- 3. Acquisition of basic laboratory techniques.
- 4. Working under sterile conditions.
- 5. Isolation, separation and analysis of Proteins by Native-PAGE and SDS-PAGE
- 6. Pipetting.
- 7. Primer Design.
- 8. Chromatography and its types.
- 9. Protein assay (standard curve).
- 10. RNA extraction.
- 11. DNA isolation conventional PCR.
- 12. Blotting techniques.

SEMESTER –III

Program: M.Sc.,	Semester : III (2022 Onwards)
Course Title: Genetics and Genetic	Class Time: As per Time Table
Engineering	
Subject Code: 502301	
Name of Course Teacher	Dr. M. Karthikeyan
	Dr. J. Joseph Sahayarayan
Moble: +91 9486981874	E-mail: karthikeyanm@alagappauniversity.ac.in
$+91\ 9047564087$	josephj@alagappauniversity.ac.in

Genetics and Genetic Engineering

Course Brief:

Genetic and Genetic Engineering, also called "Recombinant DNA technology" is one of the main branches of biological sciences that deal with the manipulation of genetic material of any organism. This important course will explain to the students to understand the mechanism of genetic changes, techniques used for genetic modifications. The course also highlights basic and advanced molecular techniques such as polymerase chain reaction (PCR), DNA sequencing-which covers conventional first generation sequencing technology (Sanger Sequencing) to high throughput second (Pyrosequencing & Illumina) and third sequencing technologies (Nanopore, SMRT sequencing), blotting techniques, chromosomal changes and DNA profiling. The proposed course will cover topics starting from manipulation of organisms at genome level to use of that organism at various fields including agriculture, medical and pharmaceutical industries.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Video-conferencing for lectures that will be sought from experts belonging to overseas reputed institutions
- Case-studies and Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students

who arrive late by 10mins after the attendance will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of thetopics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academiccareer.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar
As per Acad	emic Ca <mark>le</mark> ndar	After C	IA Test-I

Course Outline: Core: Genetics and Genetic Engineering

- 1. Understand and think about the basics of Genetic and Genetic Engineering.
- 2. To understand the role, use and types of different DNA modifying enzymes viz. Polymerases, Nucleases, restriction endonuclease, ligases etc.
- 3. Acquire basic knowledge of DNA sequencing methods from conventional (Sanger sequencing) to High throughput Next generation sequencing technology, their principle, chemistry, theory and types.
- 4. Syllabus will also provide plethora of information to students regarding basic molecular biology techniques like blotting and its different types, DNA foot printing as well as description of industrial application of genetic engineering Technology, therapeutic and enzymatic products and deployment of Genetics and Genetic Engineering in diagnosis and disease.

More books for Reading and Referencing:

An	Introdu	ctior	n to g	genetic	engineer	ring thi	ird ec	lition	– De	esmo	ond S	S.T.Nicholl	
0	· F	•	•	(0, f)	1 TT' 1	T 1			1	1	Ο Τ	1 2000	-

Genetic Engineering (Oxford Higher Education) Paperback – 8 Jul 2009

Genetic Engineering Paperback – 1 Jul 2017 by Sandhya Mitra

Semester – III									
Core-X	Course Code:	Genetics and Genetic	Т	Credits: 5	Hours :5				
	502301	Engineering							
		Unit - I							
Objective -1	Objective -1 To define and explain basic concepts of genetics including phenotypes, alleles,								
	dominance, inheri	tance patterns and mutations.							
Basics of Gen	etics: Definition ar	nd scope of Genetics, Definitions	s- Phenoty	pes, Alleles, Do	ominance,				
Incomplete D	ominance, co-domi	nance, Recessiveness, Homozy	gous, Het	erozygous, Hem	nzygous,				
Penetrance ar	id Expressivity. N	lendelian genetics: Mendel's e	experimen	ts, Law of se	gregation,				
monohybrid c	rosses, Law of inc	rependent assortment and exce	ptions, int	roduction to lin	kage and				
recombination	, Inheritance in fan	nilies, pedigree symbols, autosor	mal domin	ant, autosomal	recessive				
X-linked inher	ritances. Multi-fact	orial, Mitochondrial and comple	ex inherita	nce.					
Outcome - I	Develop a stron	g foundation in the basics	of geneti	cs, including	K)				
	Mendelian genetic	es, inheritance patterns, and pedi	gree analy	S1S.	N2				
		Unit – II							
Objective -2	To describe gene	interactions including complen	nentary, s	upplementary,ep	pistatic				
	and non-epistatic	interactions.							
Gene Mutation	ons and Interaction	ons: Structure and organization	of humar	n genome: chro	mosomes,				
mitochondria.	Definition and type	es of mutation, Eye color in Dros	sophila, Bl	ood groups and	Rh factor				
in Human. Ge	netic problems rela	ted. Gene interactions: Deviati	ons from	Mendelism: Inte	er Allelic-				
Complementar	Complementary gene interaction Ex. Lathyrus odoratus. Supplementry gene interaction Ex. Grain								
color in Maize. Epistasis: - Dominant -Ex. Fruit color in Cucurbita pepo. Epistasis: - Recessive -Ex.									
Coat color in Mice. Inter allelic Non Epistatic: Ex. Comb pattern in Fowl.									
Outcome -2	2 Understand the facts about the gene mutations, interactions, and their K2								
	implications in various organisms, including humans.								
Unit – III									
Objective -3	To explain mecha	nisms of gene expression in prol	karyotes a	nd eukaryotesai	nd				
	methods to study g	gene expression.							
Gene Express	sion Studies: Proka	ryotic and Eukaryotic Systems, l	Prokaryoti	c and Eukaryoti	c genome				
organization,	structure and mech	nanisms of g <mark>ene expres</mark> sion, fa	ctors invo	olved in gene r	egulation,				
Basic concep	ts of replication,	Regulation of translation, P	ost trans	criptional mod	ifications,				
processing of	DNA, RNA and	proteins methods for studying	g gene e	xpression and i	regulatory				
sequences, la	rge-scale expressi	on analysis, Recombinant Dl	NA techr	ology, over ex	pression-				
Isolation and p	ourification of prote	ins-various techniques, Mechani	sms of gen	nome alterations	5.				
Outcome -3	Master the concept	ots of gene expression, regulatio	n, and reco	ombinant DNA					
	technology in prol	karyotic and eukaryotic systems.			K5				
		Unit – IV							
Objective -4	To describe metho	ods of genetic transfer and mappi	ing as wel	l as applyconce	ots of				
	population genetic	cs.	C						
Gene Transfe	er methods and Po	pulation studies: Genetic varia	tions and	polymorphism a	at genome				
level, Epigen	etic mechanisms	of inheritance, Methods of ge	enetic tra	nsfers – transf	formation,				
conjugation, t	ransduction and se	exduction, mapping genes by	interrupte	d mating, fine	structure				
analysis of ge	enes. Basic Human	genetics: Pedigree analysis, li	inkage tes	ting, karyotype	s, genetic				
disorders, Pop	ulation genetics, Ha	urdy Weinberg Principle.	C						
Outcome -4	Acquire knowled	ge of gene transfer methods.	population	n genetics. and					
	human genetics, in	ncluding genetic disorders and ka	aryotypes.	C , E	K3				
		Unit-V	<u> </u>		1				
	To elucidate gene	tic engineering strategies for pla	ants and a	nimalsincluding	5				
Objective -5	Agrobacterium-m	ediated transformation, application	ons and sa	fety issues.					

Genetic Engineering Strategies: Genetic transformation by using *Agrobacterium tumefaciens*, virulence, Ti and Ri plasmids, binary vectors and their utility, T DNA transfer, *Agrobacterium* mediated gene delivery, selectable markers, Monocot and dicot transformation, Management of transgenic plants, Applications of plant genetic engineering, Abiotic and biotic stress resistance, Pest Resistance, Herbicide Resistance, Mechanism of gene action, fruit ripening process, Improvement of the nutritional quality of seeds, Edible vaccines, Issues in Genetic Engineering, Bio and Environmental safety of transgenic products. Methods of gene transfer to animal cell culture, Selectable markers for animal cells - Isolation and manipulation of mammalian embryonic stem cells.

Outcome -5	Know the aspects of genetic engineering strategies for plant and animal	
	improvement, addressing issues related to bio and environmental safety.	K3

Suggested Readings:

Sandy B., Primrose and Richard Twyman. (2016). Principles of Gene Manipulation and genomics; Wiley-Blackwell. 7th Edition

Brown T. A. (2016). Gene cloning and DNA analysis, An introduction; Wiley-Blackwell, 7th edition.

Watson, J. D, Gilman, M., Witkowski, J., and Zoller, M. (2007) Recombinant DNA: Genes and Genomes: A Short Course, W.H. Freeman and Co., New York, N.Y., U.S.A. 3rd Edition.

Gunder. (2010) Essentials of Medical Genetics Jones and Bartlett learning 1st edition. Strachan T, and Read AP. (2012) "Human Molecular Genetics"; Garland Science Publisher 4th edition.

Bruce. R. Korf. (2013) Human Genetics and genome 4th edition kindle edition.

Jin Kim. (2017) Cancer Genetics and Genomics for Personalized Medicine 2nd edition.

Online Resources:

1. https://www.google.com/search?q=Principles+of+Gene+Manipulation+and+genomics

2. https://link.springer.com/chapter/10.1007/978-3-642-61462-0 1

K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create

Course designed by:Dr. J. Joseph Sahayarayan

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	M(2)	S(3)
CO2	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	M(2)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	S(3)	S(3)
W. AV	3	3	3	2	2	3	2	3	2.4	3
		0 04	(2		<i>и</i> 1.	(Δ) T	т	(1)		

Course Outcome VS Programme Outcomes

S – Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	M(2)	S(3)	S(3)
CO2	M(2)	M(2)	M(2)	S(3)	S(3)
CO3	M(2)	M(2)	M(2)	S(3)	S(3)
CO4	M(2)	M(2)	M(2)	S(3)	S(3)
CO5	M(2)	M(2)	M(2)	S(3)	S(3)
W.AV	2	2	2	3	3

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar – Genetics and Genetic Engineering

- 1. Mendel's experiments.
- 2. Sex linked inheritance.
- 3. Pedigree Analysis.
- 4. Types of mutation.
- 5. Blood groups, Rh factor in Human, Epistasis.
- 6. Genome organization of Prokaryotic and Eukaryotic cell, Regulation of translation, Post
- transcriptional modifications.
- 7. Mechanism of genome alteration.
- 8. Chromosomal abnormalities.
- 9. Oncogenes, Tumor suppressor genes.

10. Selectable markers, abiotic and biotic stress resistance, fruit ripening, edible vaccines.

Structural Biology

Class Time: As per Time Table
Prof. J. Jeyakanthan
Email: jjeyakanthan@alagappauniversity.ac.in

Course Brief:

Protein structure forms a central hub to the modern understanding of biological processes and is used in various biotechnological applications including the design of medicines and vaccines, agrochemicals and enzymes for industrial processes. This course aims to extend the discussions on protein structure and function present in microbes, insects, animals and human models and to use this knowledge to gain an understanding of the essential processes of molecular biology. The course covers two principle themes: Small molecular X-ray crystallography: topics include Crystal growth and its techniques, Crystallization of synthetic compounds, X-ray data collection and direct methods to refine the structure. Macromolecular X-ray crystallography topics include - structure and function of different classes of proteins, cloning, expression, purification, crystallization, data collection and structure solution/ determination. Protein folding, Protein degradation, development of new therapies, molecular interactions and recognition are covered in this syllabus.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Video-conferencing for lectures that will be sought from experts belonging to overseas reputed institutions
- Case-studies and Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance has been taken will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built

their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides

the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the

topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	II CIA Test	Assignment	Seminar
As per Aca	ademic Calendar	After CI	A Test-I

Course Outline: Structural Biology

- Small molecular X-ray crystallography: include Crystal growth and its techniques, Crystallization of synthetic compounds - X-ray data collection and direct methods to refine the structure.
- Macromolecular X-ray crystallography: include structure and function of different classes of proteins, cloning, expression, purification, crystallization, datacollection and structure solution/ determination.
- Tools for model building and refinement.
- Structural data repositories: Protein Data Bank, Electron Microscopy Data Bank.
- Tools for homology modeling: WHATIF, AutoRickshaw, ARP/wARP, and other software.
- Tools and resources for drug discovery: ChEMBL, GOLD for protein-ligand docking, PDBeChem, PDBeMotif.
- Tools and resources for protein analysis and classification: Pfam, CATH, SCOP, InterPro, PDBeFold, ProFunc.

More books for Reading and Referencing

Macromolecular Crystallography with Synchrotron Radiation by John R. Helliwell; 2004, **ISBN:0521334675**

Principles of X-ray Crystallography by Li-ling Ooi; 2010, ISBN:9780199539045

International Tables for Crystallography, Volume C: Mathematical, Physical AND Chemical Tables edited by E. Prince, 2004, **ISBN:1-4020-1900-9**

		Semester – III					
Core-XI	Course Code:	Structural Biology	Т	Credits: 5	Hours :5		
	502302						
		Unit I					
Objectives -	1 To and comprehe	end basic knowledge und	erlying th	e demonstrate o	central		
	concepts in the structural biology through theoretical and practical						
	methodologies.						
Introduction	to Crystallograph	y: General concepts, o	verview	of Crystals a	nd their		
properties. Sing	gle crystal, powder c	rystal and Amorphous sol	lid. Unit c	ell, Lattices, Pla	anes and		
Indices, stereo	graphic projection	of point groups and spa	ce groups	s. Crystal syste	ems and		
Symmetry. X-r	ay generator, diffrac	tion and its applications;	Laue equa	tions, Braggs' I	Law and		
its applications	in X-ray diffractio	n, Atomic scattering fact	tor, Struct	ure factor and	Electron		
density calculat	tions, phase problem	1 1 1 1 0 4 4	11.1	1 1 '	LZO		
Outcome - I	Understanding t	he basic ideas of structur	al biology	andexplain	K2		
	the $X - ray$ to de	Unit II	.				
	To standar the f	UIIII – II	ing hare	l magaarala am 1			
Ubjective - 2	2 10 study the r	a determination of higher	nes basec	research and			
Structure Dot	solution Structur	use: Synchrotron rediction	n and ita i	mulications in	atmiatura		
determination	Introduction to X ra	v Free Electron Laser tec	hnology (XFEL) imports	situcture		
applications (rvo-electron micro	scopy Fiber Powder	and Neut	ron diffraction	NMR-		
Introduction a	nd general aspects	of structure determinat	ion NM	R Sample prei	naration		
Importance of	NMR in Structural B	iology, Cryo-EM.		te sumpte proj	Jurunom.		
Outcome - 2	Creating the ba	sic experiments and rese	arch meth	ods to identify	K5		
	the gene/protein	n, isolate, purify and e	explain th	e functions of	f		
	proteins.		1				
		Unit – III					
Objective - 3	B To approach	of structure and	functio	n relationsh	ips of		
-	biomolecules ar	nd methods to solving th	ne Small 1	molecule crysta	ıl		
	structures.		21				
Small Molecul	e X-ray C <mark>rystall</mark> og	r aphy : Crystal growth - v	arious tec	<mark>hniq</mark> ues, Crysta	llization		
of small mole	cules from synthetic	e compounds, Single cry	ystal X-ra	y data collecti	on, data		
reduction. Stru	cture solution-App	lication of direct method	ds of solv	ving a small m	nolecule,		
Patterson meth	od. Refinement of c	ystal structure – Fourier	refinemen	t, Fourier synth	esis and		
least squares te	chniques. Structure v	validation and analysis					
Outcome - 3	Describe the <i>in</i> v	vitro analysis that aid to d	etermine t	he smalland	K5		
	macromolecular	structures.					
	4 T : 1 .: C :		L*	1 1 / 1 1	. 1		
Objective - 2	I lo identify its th	erapeutic impacts by mal	king a tho	rough detailed s	study on		
	its atomistic st	ructure and its correlat	ion with	function deliv	ered in		
Drotoin V roy	Crystallography:	55. Crystallization mathada (aitting ha	naina dron mi	arabatab		
methods etc.)	Soaking and Co (rystallization methods (Heavy ato	ms screening	X ray		
data collectio	n data reduc	tion and Integration	vario	nis sereening,	structure		
determination	methods interpret	tation of electron der	nsity man	os structure	solution		
structure	refinement	Structure Validation	n and	Analysis S	tructural		
Classification	Folds and Motifs. De	eposition of structure in P	rotein Dat	a Bank (PDR)			
Outcome - 4	Demonstrate the o	locument in proper com	outational	and experiments	al K4		
	approaches.	r p		-T			
L	11						

	Unit-V	
Objective - 5	To acquire knowledge on the various aspects of the protein crystalst and molecular aspects of theprotein crystal structure	ructure
Molecular Geo solvent correcti angles), Confor motion analysis hydrophobic, va Application of 2	metries and Interactions : R-factors, B-factors, Density fit, Unit matons. Internal geometry of molecule (Bond lengths, Bond angles and mation of small and macromolecule structures, Ramachandran Plot, Planarity, Chirality, covalent and non-covalent interactions-hydrogen an der Waals forces, disulphide bonds etc. K-ray crystallography in drug design.	p, Bulk- Torsion thermal n bonds,
Outcome - 5	Create a power point presentation with animation, audio and video of interactions between the complexprotein structures	K5
Suggested Read Giacovazzo, Gilli, J Editior Oxford Carl Brand Publish Amit Kesse Motior Toshiya Sen Spring Bernhard F Applic George H. S Sons Jan Drenth (Bourne, P. F Christopher Liljas, "Textb Dmitri I. Sv biologi Marcus Free by X-ra David Blow Li-ling Ooi,	 ings: , C. Monaco, H.L. Artioli, G. Viterbo, D. Milanesio, M. Ferraris, G. P. Zanotti, G. Catti, M. (2011) "Fundamentals of Crystallography in"; International Unioin of Crystallography; Oxford [u.a.]: Oxford Unit Science Publications en and John Tooze (1991) "Introduction to Protein Structure": ining Inc l and Nir Ben Tal (2018). "Introduction to Proteins. Structure, Funce and Edition"; CRC Press - Taylor and Francis Group. ida and Katsumi Maenaka (2016). "Advanced Methods in Structural B er. Rupp (2010). "Biomolecular Crystallography - Principles, Pract ation to Structural biology"; GS - Garland Science - Taylor and Francis Stout, Lyle H. Jensen (1989) "X-Ray Structure Determination": John V (1994) "Principles of Protein Crystallography"; Springer-Verlag New Y E. & Weissig, H. (2003) "Structural bioinformatics"; Wiley-Liss Hammond (2009) "The Basics of crystallography and diffraction" A., Liljas, L., Piskur, J., Lindblom, G. Nissen, P. Kjeldgaard, M book of structural biology"; Hackensack, N.J. World Scientific. vergun (2013) "Small angle X-Ray and neutron scattering from solu ical macromolecules" Oxford. derick Charles Ladd and Rex Alfred Palmer, (2013), Structure Detern ay Crystallography, Springer. ., and Jan Denth (2014) "Macromolecular crystallography", Cambridge 	Gilli, G. - Third v. Press, Garland tion and Giology"; ice and s Group. Wiley & York, Inc Oxford. . (2009) utions of mination
Online Res	ources:	
1. ht 2. ht	tps://www.sciencedirect.com/topics/materials-science/crystallography tps://www.sciencedirect.com/topics/engineering/protein-crystallization	L

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
			Course de	signed by:Dr. J.	Jeyakanthan

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	M(2)	M(2)	S(3)
CO2	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)
CO3	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)
CO4	M(2)	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)
W.AV	2	2.2	2.2	2.2	2	2.2	2	2	2	2.4
	S – Strong (3), M-Medium (2), L- Low (1)									

Course Outcome VS Programme Outcomes

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)
W. AV	3	3	3	3	3

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar - Structural Biology

- 1. X-ray and its properties; X-ray generation diffraction and its applications.
- 2. Structure factor, Electron density calculations and phase problem.
- 3. Point group, Space group, Crystal systems and Symmetry.
- 4. Synchrotron radiation and its implications in structure determination.
- 5. NMR- Introduction and general aspects of structure determination.
- 6. Application of direct methods over Patterson method of solving a small molecule.
- 7. Protein structure determination methods Molecular Replacement technique (MR), Single Isomorphous Replacement method (SIR), Multiple Isomorphous Replacement Method (MIR), Single wavelength Anomalous Diffraction method (SAD) and Multi wavelength Anomalous Diffraction method (MAD).
- 8. Application of X-ray crystallography in drug design.
- 9. Conformation of small and macromolecule structures and thermal motionanalysis.
- 10. list out the places for Synchrotron and NMR facilities available for ProteinStructure Determination.

Pharmacogenomics					
Program: M.Sc.,	Semester: III (2022 Onwards)				
Course Title: Pharmacogenomics	Class Time: As per Time Table				
Subject Code: 502303					
Name of the Course Teacher	Dr. M. Karthikeyan				
Moble: +91 9486981874	E-mail: karthikeyanm@alagappauniversity.ac.in				

Course Brief:

The course will provide an introduction to the application of genetic and genomic methods to the study of drug response and the genetic basis for variation in that response. It will give students a broad perspective on the emergence of Pharmacogenomics as a new field and provide them with insight into the growing importance it will play in clinical therapeutics and future drug design. The latest advancement in NGS sequencing will be much helpful to students to gain insights into Pharmacogenomics.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Video-conferencing for lectures that will be sought from experts belonging to overseas reputed institutions
- Case-studies and Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance has been taken will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate

interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

CIA Test I	II CIA Test	Assignment	Seminar
As per Aca	ademic Calendar	After CI	A Test-I

Important dates: Please note down the important dates and stick to the schedule

Course Outline: Core: Pharmacogenomics

- Basic concepts of pharmacogenomics and genetics diseases.
- Pharmacogenomics necessity in drug designing.
- Polymorphisms and their importance in drug designing.
- Structural influence in the Drug response.
- Prediction of structural changes among sequences by the influence of polymorphisms.
- Tools for pharmacogenomic analysis. Pharmacokinetics (PK), Pharmacodynamics (PD).
- Target Structure optimization, Validation, lead identification, ADME prediction.
- Synthesis, assay, and clinical trials for the identification of novel drug.
- Allele-Specific Variation in Human Gene Expression and Genome-Wide Analysis of Allele-Specific Gene Expression.
- Expression study using Oligo Microarrays, Roche Ampli Chip, HaploChIP.
- NGS technology and application in Pharmacogenomics.
- Association Studies in Pharmacogenomics Pharmacogenomics of Anticoagulation drugs.
- Ethical issues for Pharmacogenomics.
- Pharmacogenomics and Future of Pharmaceuticals.

More books for Reading and Referencing

Molecular analysis and Genome discovery; John Willey & Sons, Ltd. by Rapley, R. & Harbron, S. 2012, ISBN: 978097758779

Comparative genomics: empirical and analytical approaches to gene orderdynamics, map alignment and the evolution of gene families; Netherlands, Kluwer Academic Publishers by Sankoff, D. & Nadeau, J.H. 2000, ISBN:978-0-7923-6584-6, 978-94-011-4309-7

	Semester-III						
Core-XII	Course Code	Pharmacogenomics	Т	Credits:4	Hours:5		
	502303						
		Unit-I					
Objective - 1	To understand th	e principles of human gene	tics and	d genomics as	s they apply		
	to improving the	problems in drug therapy op	timizat	ion and patier	ntcare.		
Introduction	and Concepts i	n Genomics: Large scale	genom	e sequencing	strategies,		
Genome asser	mbly and annotat	ion, Genome databases of	plants,	animals and	pathogens.		
Metagenomic	s: Gene network	s: basicconcepts, computat	ional n	nodel such a	as Lambda		
receptor and	lac operon Predic	tion of genes, promoters, s	splice s	ites, regulato	ry regions:		
basicprinciple	s, application of	methods to prokaryotic	and et	ukaryotic gei	nomes and		
interpretation	of results, Basic	concepts on identificatio	n of (disease gene	s, role of		
bioinformatics	s-OMIM database	e, reference genome sequer	ice, int	tegrated gence	omic maps,		
gene expressio	on profiling; Identi	ification of SNPs, SNP datab	ase(Db	SNP).			
Outcome - 1	Understanding the	e principles of pharmacoger	omics	and its	K2 &K4		
	significance in dru	ig therapy					
		Unit-II	<u> </u>				
Objective - 2	To gain a knowle	edge about comparative and	function	nal genomics			
Comparative	genomics: Bas	sic concepts and applicat	tions,	BLAST2, M	lega Blast		
algorithms, Pi	pMaker, AVID,V	ista, MUMmer, application	s of su	ffix tree in c	omparative		
genomics, syn	iteny and gene ord	ler comparisons, Comparativ	e geno	mics database	es: Clusters		
of Orthologou	is Groups (COGs)) Functional genomics: App	lication	n of sequence	based and		
structure-base	d approaches t	to assignment of gene	function	ons - e.g.	sequence		
comparison,st	ructure analysis(es	specially active sites, binding	g sites)	and comparis	son, pattern		
Identification,	etc. Use of variou	is derived databases in funct	ion assi	gnment, Poly	morphisms		
Introduction,	types and important	nce in Drug targets. Predicti	on of s	tructural char	iges among		
Sequences by	Linderstanding t	bymorphisms.	acmost	a of	V1 0 VA		
Outcome - 2		the structural and functional	aspect	\$ 01	K2 &K4		
	porymorphisms	Unit III	17				
	To immenatio not	tiont outcomes by maxim	izina	fficacy and	minimizina		
Objective - 3	to improve pa	therapy through research	teochin	a and service	focused on		
	genetically guide	d drug therapy decision m	akina	drug discove	ry and drug		
	development	ed drug therapy decision-in	aking,	ulug ulscove	iy and drug		
Pharmacogan	omics Overview	Concents and Application	ne. Inti	roduction ba	sic concents		
about genetics	diseases Persons	lized medicine- introduction	n and i	importance	The genetics		
of therapeutic	targets and gene-h	ased targets Pharmacogeno	mics ne	ecessity in dr	adesigning		
Drug response	e to natients St	tructural influence in the	Drug	response F	fficacy and		
metabolism c	of drugs Pharm	acogenomics vs Structur	ral Ph	armacogenon	nics Drug		
metabolism pa	thways and adve	erse drug reactions. Tools	for ph	armacogenom	nic analysis		
Pharmacokinet	Pharmacokinetics (PK) Pharmacodynamics (PD) Process in Structural Pharmacogenomics						
Target Structu	re optimization.	Validation, leadidentification	n, ADN	ME prediction	n, synthesis.		
assays and Clin	nicaltrials.	, 	,	1	, ,,		
Outcome - 3	Understand the	pharmacodynamics and pha	rmacok	inetics	K2		
	properties of the	e drug.					

		Unit	-IV		
Objective 1	To help students t	to gain knowl	edge about the	NGS technologies	s andvarious
Objective - 4	techniques useful	in Personalize	ed drug designin	g.	
Pharmacogen	omics analysis,	Techniques	and Case	study: Role of	SNP in
Pharmacogenc	mics, SNP array	s DNA mic	roarray: databa	se and basic to	ols, Gene
Expression C)mnibus(GEO), A	Array Expres	ss, SAGE dat	abases. DNA	microarray:
understanding	of microarray data	a, normalizing	g microarray dat	a, detecting differ	rential gene
expression, co	rrelation of gene	expression da	ata to biologica	l process and con	nputational
analysis too	ols(especially clu	ustering ap	proaches). Ap	oplication of	NGS in
Pharmacogene	mics: Emergence	e of Next	generation sequ	uencing, Illumin	a Genome
Analyzer, Na	nopore Sequenci	ng, Single	Molecule Real	Time DNA s	sequencing,
Comparison o	f Next generation	sequencing	techniques, Dra	wbacks of NGS,	NGS File
formats, & app	plications. Ethical i	issues for Pha	rmacogenomics	; Future of Pharma	aceuticals.
Outcome - 4	Discuss about the	ne NGS techn	iques and its app	olications in	K4
	Pharmacogenon	nics.			
		Unit	t-V		
Objective - 5	Case study exam	ples and con	cepts will help	students to under	stand the
	current scenario i	in therapeutic	treatment.		
Case Study	Examples-Cancer	r Pharmaco	genomics: Con	cepts of cancer	genomics,
Bioinformatics	s in cancer diagno	osis, prognosi	s and treatment	t, cancer specific	databases:
TCGA, ICGC,	, COSMIC, importa	ance of copy	number alteratio	ns in Cancer, Bio	informatics
methods for de	etecting copy numb	per alterations	, correlating clin	nical outcomes wi	th genomic
data, Survival	analysis and use of	bioinformatio	es for personal m	nedicine.	
Outcome - 5	Application of var	rious comput	ational tools to	analyze gene	K5
	expression data.	SID-2	500		
Suggested Re	adings:				
Falconer,D.	S.,Macka <mark>y,T.</mark> F.C.,(Ltd,4 th Edition	1996)"Introdu	action to Quantit	ative Genetics".Pe	earson Ed
Yan, Qing.(2014)."Pharmacog	enomics in D	rug <mark>Disc</mark> overy an	nd Development";	Springer-
Verlag,	NewYork, LLC, 2	nd Edition.	·	10	
Yui-Wing, J	\Box Cavallari. (2013).	"Pharmacoge	nomics-Challeng	ges and Opportuni	ties in
I herap	eutic Implementation	on"Academic	Press, I Edition	l.	analytical
Sankon, D.	сhes togene orde	(2000) Com	manalignment	and the evolution	n of gene
familie	s":Netherlands. Kl	uwer Academ	ic Publishers.	and theevolution	i or gene
Richard, J.R	.(2003)"Analysiso	fGenesandGe	nomes";WileyP	ublications.	
Mount, D. (2004) "Bioinforma	atics: Sequenc	e and Genome	Analysis";2 nd editi	on, Cold
Spring	Harbor Laboratory	Press, New Y	Cork.		
Online Resou	rces:				
1. https://w	ww.genome.gov/ge	enetics-glossa	ry/Pharmacogen	iomics	
2. https://w	ww.cancer.net/nav	igating-cance	r-care/how-canc	er-treated/persona	lized-and-
targeted-	therapies/understar	nding-pharma	cogenomics		
3. www.sci	encedirect.com/top	oics/medicine-	and-dentistry/ph	armacogenomics	
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
			Course desi	gned by: Dr. M.	Karthikeyan

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	S(3)	S(3)	-	-	M(2)	S(3)	S(3)
CO2	S(3)	M(2)	L(1)	L(1)	S(3)	-	S(3)	S(3)	L(1)	L(1)
CO3	S(3)	S(3)	S(3)	S(3)	L(1)	-	M(2)	S(3)	M(2)	L(1)
CO4	L(1)	M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	S(3)	L(1)
CO5	M(2)	M(2)	S(3)	M(2)	S(3)	L(1)	S(3)	S(3)	M(2)	L(1)
W. AV	2.4	2.4	2.4	2.2	2.4	0.8	2.2	2.6	2.2	1.4

Course Outcome Vs Program Outcomes

S-Strong (3), M-Medium (2), L-Low (1) Mapping

Course Outcome	Vs Program	Specific outcomes
-----------------------	------------	-------------------

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	L(1)	S(3)	-	-
CO2	L(1)		S(3)	L(1)	L(1)
CO3	S(3)	(mon	L(1)	M(2)	S(3)
CO4	M(2)	S(3)	M(2)	M(2)	L(1)
CO5	S(3)	M(2)	S(3)	M(2)	M(2)
W. AV	2	1.2	2.4	1.4	1.4

S-Strong (3), M-Medium (2), L-Low (1)

Assignment & Seminar: Pharmacogenomics

I. Objective type Questions. Choose the correct or most correct alternatives

1. Potential outcomes of pharmacogenetic research include all the following except

- A) lower incidence of adverse drug effects.
- B) new drug development.
- C) higher health care costs.
- D) improved treatment outcomes.
- E) pretreatment screening for genetic polymorphisms.
- 2. The most commonly occurring variant in the human genome is
 - A) tandem-repeat polymorphism.
 - B) premature stop codon.
 - C) nucleotide base insertion.
 - D) single-nucleotide polymorphism.
 - E) defective gene splicing.
- 3. Genetic variations in drug targets may contribute to which drug property?
 - A) Bioavailability
 - B) Half-life

- C) Racial differences in response
- D) Peak-dose area under the curve
- E) Entry into the central nervous system
- 4. CYP2D6 polymorphism can affect:
 - A) drug efficacy.
 - B) drug toxicity.
 - C) drug interaction potential.
 - D) drug delivery.
 - E) a, b, and c.
- II. Write short notes for the following questions
- 5. Explain the role of Bioinformatics in Pharmacogenomics.
- 6. Students should complete one large sequence analysis projects during the course.
- 7. What is polymorphism? and explain its importance in drug targeting.
- 8. Prepare a Glossary for any 25 Cyp enzymes involved in Pharmacogenomics.
- 9. How pharmacogenomics aims to improve drug efficacy and toxicity?
- 10. Explain about Single Nucleotide Polymorphism and its role in Pharmacogenomics.
- 11. Describe personalized medicine and its importance.

Program: M.Sc., Bioinformatics	Semester : III (2022 Onwards)
Course Title: Lab-III: Computer Aided	Class Time: As per Time table
Drug Design (CADD)	
Subject Code: 502304	
Name of Course Teacher	Dr. Sanjeev Kumar Singh
Mobile: +91-9894429800	Email : sksingh@alagappauniversity.ac.in

Lab-III: Computer Aided Drug Design (CADD)

Course Brief:

The course depicts the core concepts of Computer Aided Drug Designing methods. It covers a vast range of methods and computational tools used in drug designing which includes, virtual screening methods, structure similarity searching method, protein structure prediction, molecular dynamics simulation, different types of molecular docking and its related software(s), pharmacophore concepts, combinatorial synthesis, QSAR and its theory. This course serves the students not only provides hands on experience on various computational tools but also offer sound knowledge on understanding the merits and demerits of the methods and tools available. This course also serves the students to get prepared for the extensive research in the field of Computer Aided Drug Designing.

Teaching Methods: The mode of teaching is based on the following learning activities:

- Lectures covering the theoretical part will be delivered using PowerPoint presentations.
- A set of laboratory exercises to analyze biological problems using softwares and tools to develop student's interests in scientific discovery.
- Case studies in informatics-based research.

Attendance: The students are expected to attend the classes regularly, since regular attendance is essential to gain academic achievement. As per the University norms, the students having a minimum scale of 70-75% attendance are only qualified to write their end-semester examinations.

Punctuality: Punctuality is the most important quality for the student to be followed and maintained to achieve success. Students who arrive late by 10 mins to the class without any vital reason will be marked absent in the attendance register. On the other hand, valid excuse including personal or medical emergency is acceptable, with prior consent by the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking practice and much more that will provide a wholesome enriched classroom experience. When students participate, they learn from one another and gain their knowledge better.

Submission of Assignment: Assignments are given to students in order to apply the concepts for deeper understanding of the subject. Therefore, each student will be allocated two assignments for the course, covering the entire topic. Students will be given deadline to submit the assignment by the course instructor and good preparation of assignment will help the students for their final exams.

Presentation of Seminar: Apart from the assignments, students are supposed to give an oral presentation during the class seminar hours in their assigned topic. The concerned instructor

will encourage the participants to ask valid questions during seminar presentation in order to put up their confidence levels and communication skills. In addition, students will be able to gain information and can be updated in their course.

Preparedness: At the end of every class, the concerned instructor conveys the students about the details that will be handled in the next class to increase the student's awareness related to the topics.

Academic Dishonesty: Academic dishonesty is a completely unacceptable mode of conduct and every student should be aware of this important aspect. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Depending upon the requirement of student's possibility, the course syllabus will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairperson.

Important dates: Scheduled dates for the various activities related to the course

CIA Test I	CIA Test II	Assignment I	Seminar
As per Acad	emic Calendar	After CIA Test -	I

Course Outline: Lab III: Computer Aided Drug Design

- Energy minimization, geometry optimization, conformational analysis, global conformational minima determination; Bioactive vs. global minimum conformations
- Automated methods of conformational search; Advantages and limitations of available software; Molecular graphics;
- Computer methodologies behind molecular modeling, High throughput virtual Screening. Screening of Potential Compounds from database. Structure similarity searching. *De novo* drug designing. ADME/T for predicted ligand.
- Ramachandaran plot, Protein structure prediction software's, Protein structural visualization. Molecular dynamics simulation of native and complex protein structures. Molecular dynamics simulation of docked complex (Protein-Ligand, Protein-Protein, Protein- Metal, Protein-Nucleic acid and Protein Substrate simulation).
- Molecular docking- different types of docking, rigid docking, flexible docking and partially rigid and partially flexible docking, manual docking Protein ligand docking, Protein- Protein docking.
- Pharmacophore generation and analysis, pharmacophore mapping, methods of conformational search used in pharmacophore mapping
- QSAR and QSPR, QSAR Methodology, Various Descriptors used in QSARs: Electronic; Topology; Quantum Chemical based Descriptors.

More books for Reading and Referencing

Computational Drug Discovery and Design - Riccardo Baron

Publisher: Springer Publication, 2012. ISBN: 978-1-61779-464-3

Computer-Aided Drug Design: Methods and Applications - T. J. Perun & C. L. Propst

Publisher: CRC Press, 1989. ISBN: 978-0824780371

			Semester-	III				
Core-XIII	Course Code	Lab	- III Computer A	Aided	Р	Credits:4	Hours:5	
	502304]	Drug Design (CA	DD)				
			Unit-I					
Objective - 1	To provide h designing	ands on	experience on va	arious con	nputati	onal tools use	ed in drug	
Molecular	modeling and	Virtua	I Screening: En	nergy mi	nimiza	tion and op	otimization,	
conformation	nal analysis, glob	al and lo	ocal minima; Bioa	ctive vs. g	global 1	ninimum con	formations;	
Automated methods of conformational search; Molecular graphics; Computer methodologies								
behind mol	behind molecular modeling, High throughput virtual Screening; Shape based virtual							
screening; S	tructure similari	ty search	ning; ADME/T Pr	operty pr	edictio	n; Structural	Fingerprint	
search.								
Outcome - 1	The students	would b	e able to perform	all the co	omputa	tional	K3	
	methods on t	heir own						
			Unit-II					
Objective - 2	To make ther	n learn a	bout virtual screer	ning and it	s types			
Pharmacop	hore: Concept of	f Pharma	cophore generation	on and ana	lysis, p	pharmacophor	e mapping,	
methods of	conformational s	search u	sed in pharmacop	hore map	ping; (Comparison b	etween the	
popular phar	macophore meth	nods like	catalyst, HipHop	, DiscoTe	ech, G	ASP, etc. with	n practical	
examples. St	ructure based and	d Energy	based pharmacop	ohore mod	els.			
Outcome - 2	They would	be able t	o explain the con-	cepts of m	nolecul	ar modeling,	K2 &K3	
	pharmacopho	ore, virtu	al screening, mo	olecular d	ocking	, 3D QSAR		
	etc.,	2	and so	0	<u> </u>			
		_	Unit-III					
Objective - 3	To let them u	nderstan	d the advantages a	and limitat	tions of	favailablemol	ecular	
	modeling software							
Quantitative	Structure Act	ivity rel	ationship (QSAF	(): QSAR	Meth	odology, QSI	PR, Various	
Descriptors	used in QSARs	Electr	onic; Topology;	Quantum	Cher	nical based	Descriptors.	
Experimental	and theoretical	approa	ches for the dete	rmination	of pr	iysico-chemic	al property;	
parameter in	ter-dependence;	nnearity	CAR with some	arity; imj		e of biologic	an activity;	
OSAP studie	120-QSF	AK, 3D-0	ZSAR with case	studies. C	ΟΜΓΑ		x; 10018 101	
QSAR studie	They would	he well (ware of the adva	ntages and	1 limit	ations of the	K3	
Outcome - 5	available con	oc well a	al tools for Drug	inages and idiscovers	7 1111110	ations of the	K3	
		iputation	Unit_IV	luiseovery	Ý			
Objective - 4	To learn then	n protein	prediction method	ls and its v	validati	on		
Molecular	Docking and N		r Dynamics Sim	ulations.	Diffe	rent types of	molecular	
docking: Rig	gid docking: flex	xible do	king: Protein- Pr	otein doc	king. I	nduced fit do	cking with	
case studies.	OM/MM dockir	ng: Cons	traints and restrair	nts in Mol	ecular	Docking. Sigr	nificance of	
partial charg	ges in molecular	dockin	g. Molecular Dyr	namics us	ing sin	mple models;	Molecular	
Dynamics w	vith continuous	potential	s and at consta	int tempe	erature	and pressur	e; Solvent	
effects in M	Molecular Dyna	mics; C	onformational	changes	in	Molecular	Dynamics.	
Biomolecula	r Simulations;	Free	energy Calculati	ions; Rest	traint	Potentials,	Importance	
of Force	Field in Dy	namics,	Conformational	Sampling	g: Ener	gy Minimizat	ion, Monte	
Carlo Simula	ations, Membran	e Simula	tion, Metadynami	cs				
Outcome - 4	Various strate	gies to d	esign and develop	new drug	likem	olecules.	K4	

Unit-V						
Objective - 5 To clear concepts of Molecular docking, Molecular dynamics simulation						
pharmacophore and 3D QSAR methods						
Hands on training: Energy Minimization and Optimization techniques, In silico Virtua	al					
screening techniques: Structure based, Shape based, Pharmacophore based, etc, Structural						
similarity and Finger print search, ADME/T Property prediction, Molecular Docking: Rigid,						
Flexible and QM/MM 2D and 3D QSAR along with CoMFA and CoMSIA, Pharmacophore						
Derivation and Pharmacophore Mapping, Molecular Electrostatic Potential (MESP) analysi	s,					
Protein-Protein Interaction and Protein-peptide Interaction, Molecular Dynamics Simulation	m					
using Protein, Protein-ligand and Protein-DNA complexes						
Outcome - 5Working with molecular modeling softwares to design newdrugK4						
molecules						
Suggested Readings:						
Marx D and Hutter J (2012) "Ab Initio Molecular Dynamics: Basic Theory and Advanced						
Methods", Cambridge University Press, ISBN: 978-1107663534						
Young DC (2009) "Computational Drug Design: A Guide for Computational and Medicinal						
Chemists", ISBN: 978-0470126851						
Bohm HJ (2000) "Virtual Screening for Bioactive Molecules, Volume 10", Wiley-VCH, ISB	N:					
978-3527301539						
Leach, A. R. (2001) "Molecular Modeling – Principles and Applications"; Second Edition,						
Prentice Hall, USA, ISBN-13: 978-0582382107						
Holtje HD (2003) "Molecular Modeling: Basic Principles and Applications", Wiley-VCH, ISB	N:					
978-3527305896.						
Kubinyl H, Folkers G and martin YC (2004). "3D QSAR in Drug Design Volume 2 Ligand-	-					
ProteinInteractions and Molecular Similarity", Bethany House Pub, ISBN-13: 978-						
0306468575.	•••					
Alvarez J (2005) "Virtual Screening in Drug Discovery", CRC Press, ISBN-13: 978-08247547	92					
Bannwarth W, Felder E (2008). "Combinatorial chemistry: A Practical Approach",						
WILEY-VCH veriag GmbH, ISBN: $9/8352/30186/$						
Marx D, Hutter J (2009) "Ab Initio Molecular Dynamics: Basic Theory and Advanced						
Methods", Cambridge University Press, ISBN-13: 978-0521898638						
Anthonsen, I. (2009). "Strategies of Organic Drug Synthesis and Design. By Daniel						
Leanicer', whey-vCH, weinneim Publisher, ISBN: 978-047019039-5	1					
Chamista" Wiley Dischard Dublishers ISDN 12: 078 0470451847	1					
Chemists, Whey-Diackwell Publishers, ISBN-15: 978-0470431847						
Saxena A and Sanay B (2010) Computer Aided Engineering Design , Springer, ISBN-15.						
Nag A and Dev B (2010) "Computer Aided Drug Design and Delivery systems" Mc Grahill						
Edition, ISBN-13: 978-0071701242						
Yan B, zhang B (2010), "Analytical Methods in Combinatorial Chemistry. 2nd Edition" CR	С					
Press. ISBN: 9780203909966	-					
Sotriffer C (2011) "Virtual Screening: Principles, Challenges, and Practical Guidelines". Wiley	/_					
VCH,ISBN: 978-3527326365						
Magnasco V (2013) "Elementary Molecular Quantum Mechanics", Second Edition, Elsevier,						
ISBN:978-0444626479						
Cavasatto C N (2015) "In silico Drug Discovery and Design - Theory, Methods, Challenge	es					
and Applications" CRC Press 1 st Edition, ISBN-13: 978-1482217834						

- Cavasotto CN (2016). "In Silico Drug Discovery and Design: Theory, methods, Challenges, and Applications" CRC Press, ISBN-13: 978-1482217858.
- Grover A (2017). "Drug Design: Principles and Applications" Springer Nature Singapore Pte Ltd,

ISBN-13: 978-9811051869

- Sarkar J (2017). "Computer Aided Design: A conceptual Approach" CRC Press, ISBN-13: 978-1138885448
- Gore M, Jagtap U B (2018). "Computational Drug Discovery and Design" Springer Protocols, ISBN:978-1-4939-7756-7

Online Resources:

- 1. https://www.wiley.com/enbr/Virtual+Screening%3A+Principles%2C+Challenges%2C+and+ Practical+Guidelines-p-9783527633340
- https://www.wiley.com/enin/Molecular+Modeling%3A+Basic+Principles+and+Applications % 2C+3rd+Edition-p-9783527315680

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
		(Course designed	by: Dr. Sanjeev K	Kumar Singh

Course Outcome VS Programme Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	S(3)	M(2)	S(3)	S(3)	S(3)	L(1)	M(2)	-	L(1)	-
CO2	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	0	S(3)	S(3)	S(3)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
C05	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S (3)	S(3)	S(3)
W.AV	3	2.6	3	3	3	2.4	2.2	2.2	2.6	2.4

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	M(2)	S(3)	S(3)	S(3)
CO3	M(2)	S(3)	S(3)	M(2)	M(2)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	2.8	2.8	3	2.8	2.8

S – Strong (3), M-Medium (2), L- Low (1)

Practical, Assignment & Seminar - Lab - III Computer Aided Drug Design (CADD)

- 1. Energy Minimization and its application.
- 2. Advantages and disadvantages of available molecular modeling softwares.
- 3. *De novo* drug designing.
- 4. Protein Structure Prediction.
- 5. Molecular Dynamics Simulation.
- 6. Molecular Docking and its types.
- 7. Monte Carlo Simulations.
- 8. Pharmacophore and Generation of Common Pharmacophore hypothesis.
- 9. Combinatorial synthesis.
- 10.3D QSAR.

SEMESTER-IV Machine Learning and Artificial Intelligence

Program: M.Sc.,	Semester: IV (2022 Onwards)
Course Title: Machine Learning	Class Time: As per Time Table
andArtificial Intelligence	
Subject Code: 502401	
Name of the Course Teacher	Dr. RM.Vidhyavathi
Mobile: +91 – 9444835869	Email: vidhyavathirm@alagappauniversity.ac.in

Course Brief:

Machine Learning mainly focuses on the enhancement and development of the computer programs, which has the property to get changed when it comes in the interaction to the new data. However, this is a kind of artificial intelligence, the Introduction to Machine Learning course enlightens the students with the algorithms that proves to be helpful for the IP professionals in analyzing the data set with ease. In modules algorithms such as: regression, clustering, classification, and recommendation have been introduced, all these helps the candidates in supervising the advanced data programming techniques.

AI has been a source of innovative ideas and techniques in computer science, and has been widely applied to many information systems. This course provides a comprehensive, graduate-level introduction to artificial intelligence, emphasizing advanced topics such as advanced search, reasoning and decision-making under uncertainty, and machine learning.

Teaching Methods: The mode of teaching is based on the following learning activities:

- Lectures covering the theoretical part will be delivered using PowerPoint presentations.
- A set of laboratory exercises to analyze biological problems using softwares andtools to develop student's interests in scientific discovery.
- Case studies in informatics-based research.

Attendance: The students are expected to attend the classes regularly, since regular attendance is essential to gain academic achievement. As per the University norms, the students having a minimum scale of 70-75% attendance are only qualified to write their end-semester examinations.

Punctuality: Punctuality is the most important quality for the student to be followed and maintained to achieve success. Students who arrive late by 10 mins to the class without any vital reason will be marked absent in the attendance register. On the other hand, valid excuse including personal or medical emergency is acceptable, with prior consent by the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking practice and much more that will provide a wholesome enriched classroom experience. When students participate, they learn from one another and gain their knowledge better.

Submission of Assignment: Assignments are given to students in order to apply the concepts for deeper understanding of the subject. Therefore, each student will be allocated two assignments for the course, covering the entire topic. Students will be given deadline to submit the assignment by the course instructor and good preparation of assignment will help the students for their final exams.

Presentation of Seminar: Apart from the assignments, students are supposed to give an oral presentation during the class seminar hours in their assigned topic. The concerned instructor will encourage the participants to ask valid questions during seminar presentation in order to put up their confidence levels and communication skills. In addition, students will be able to gain information and can be updated in their course.

Preparedness: At the end of every class, the concerned instructor conveys the students about the details that will be handled in the next class to increase the student's awareness related to the topics.

Academic Dishonesty: Academic dishonesty is a completely unacceptable mode of conduct and every student should be aware of this important aspect. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Depending upon the requirement of student's possibility, the course syllabus will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairperson.

Important dates: Scheduled dates for the various activities related to the course

CIA Test I	CIA Test II	Assignment I	Seminar
As per Academic Calendar		After CIA Test	-I

Course Outline: Machine Learning and Artificial Intelligence

- Determine the various applications of machine learning algorithms.
- Develop an understanding classification data and models.
- Learn the how to implement the unsupervised learning algorithms, which includes deep learning, clustering, and recommendation systems.
- How to perform the supervised learning techniques, such as: linear and logistic regression.
- Understanding how to create the environment for self driving Car.
- Understanding the procedure of building the AI.
- Understanding how could a trainee provide support to the Data Scientist.
- Temporal Probabilistic Reasoning and Dynamic Bayesian Networks.

More books for Reading and Referencing

Artificial Intelligence and Machine Learning, Chandra S.S.V, Prentice Hall India

Learning Private Limited, 2014, ISBN-10: 8120349342, ISBN-13: 978-8120349346.

Artificial Intelligence By Example: Develop machine intelligence from scratch using real artificial intelligence use cases, Denis Rothman, Packt Publishing Limited, 2018, **ISBN-10**: 1788990544, **ISBN-13**: 978-1788990547.

Core- Course Code Machine Learning and T Credits:4 Hours:4							
XIV 502401 Artificial Intelligence							
Unit-I							
Objective -1 To create appreciation and understanding of both the achievements of AI							
and the theory underlying those achievements.							
Introduction to AI and Production Systems: Introduction to AI-Problem formulation,							
Problem Definition -Production systems, Control strategies, Search strategies. Problem							
characteristics, Production system characteristics, Specialized production system, Problem							
solving methods, Problem graphs, Matching, Indexing and Heuristic functions, Hill							
Climbing, Depth first and Breath first, Constraints satisfaction, Related algorithms,							
Measure of performance and analysis of search algorithms.							
Outcome - 1 Understand basic Knowledge in Al K2							
Unit-II							
Objective -2 To create an understanding of the basic issues of knowledge							
representation and Logic and blind and heuristic search, as well as an							
understanding of other topics such as minimal, resolution, etc. thatplay							
an important role in Al programs.							
Representation of Knowledge: Game playing, Knowledge representation, Knowledge							
representation using Predicate logic, introduction to predicate calculus, Resolution, Use of							
of knowledge							
Or knowledge.							
in terms of intelligent agents							
Objective -3 Machine Learning in particular focusing on the core concepts of							
supervised and unsupervised learning							
Introduction to Machine Learning: Learning Problems, Perspectives and Issue							
Concept Learning, Version Spaces and Candidate Eliminations, Inductive bias, Decision Tre							
learning, Representation, Algorithm, Heuristic Space Search.							
Outcome - 3 Formulate and solve problems with uncertain information using K							
Bayesian approaches.							
Unit-IV							
Objective - 4 Students will learn the algorithms which underpin many popular							
Machine Learning techniques, as well as developing an understanding of							
the theoretical relationships between these algorithms.							
Classification in Machine Learning: Naïve Bayes Classifier, Probability estimation,							
Required data processing, Feature selection: Mutual information, Classifier, K-Nearest							
Neighbors, K-Nearest Neighbor algorithm, Support Vector Machines, Linear learning							
machines and Kernel space, SVM for classification and regression problems. Clustering:							
Distance measures, Different clustering methods (Distance, Density, Hierarchical),							
Iterative distance-based clustering, K-Medoids, k-Mode and density-based clustering.							
Outcome - 4Develop an appreciation for what is involved in learning from dataK							

		Unit-	·V						
Objective - 5	The practicals w	ill concern th	ne application o	f machine learn	ing to a				
	range of real-wor	ld problems.							
Advanced Lea	rning : Learning S	Sets of Rule	s – Sequential (Covering Algori	thm – First				
Order Rules –	Order Rules - Sets of First Order Rules - Induction on Inverted Deduction - Inverting								
Resolution – A	Analytical Learnin	ng – Perfect	t Domain Theo	ories – Explan	ation Base				
Learning – FO	CL Algorithm – R	einforcement	Learning – Tas	k – Q-Learning	– Temporal				
Difference Lear	ning.								
Outcome - 5	Explain familiar	in Expert sys	stem and its are	hitectures andde	velop K5				
	a small expert sys	stem.							
Suggested Read	lings:				i				
Kevin Night an	nd Elaine Rich, Na	ir B, (2008)	"Artificial Intell	igence (SIE)", 7	Tata Mc				
Graw									
Hill, Third	Edition.								
EthemAlpaydir	n, Francis Bach, (20	014) "Introdu	ction to Machine	e Learning" Har	dcover,				
Third Editio	on.								
Stuart Russel, I	Peter Norvig (2007)) "Al – A Mc	odern Approach"	, Pearson Educat	tion, Second				
Edition.	all (2017) "Machir	a Learning"	McGrow Hill F	ducation First F	dition				
Ethem Almay	vdin (2004) "Intro	duction to M	achine Learning	(Adaptive Comr	utation and				
Machine Le	arning). The MIT I	Press.	aennie Leannig	(riduptive comp	aturion una				
Stephen Marsla	und, (2009), "Mach	ine Learning:	An Algorithmic	Perspective", C	RC Press.				
SaikatDutt, Su	bramanian Chandra	amouli, Amit	Kumar Das, (2	2018) "Machine	Learning",				
Pearson Edu	acation, First editio	n.							
Online Reso	ources:	N/SA							
1. https://www.a	1. https://www.atariarchives.org/2bml/								
2.https://vtda.or	2.https://vtda.org/books/Computing/Programming/Introduction To Artificial Intelligence 2 nd								
Ed_PhilipCJack	sonJr.pdf								
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create				
Course designed by: Dr.RM.Vidhyavathi									

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10
CO1	M(2)	M(2)	M(2)	S(3)	M(2)	L(1)	M(2)	M(2)	M(2)	M(2)
CO2	S(3)	S(3)	M(2)	S(3)	L(1)	S(3)	M(2)	S(3)	M(2)	L(1)
CO3	M(2)	M(2)	M(2)	S(3)	L(1)	M(2)	M(2)	S(3)	M(2)	M(2)
CO4	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	M(2)	S(3)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	M(2)
W.A	2.4	2.2	2	3	1.6	2.2	2	2.8	2	1.8
v										

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	S(3)	S(3)
CO2	S(3)	S(3)	L(1)	S(3)	S(3)
CO3	M(2)	M(2)	L(1)	S(3)	S(3)
CO4	M(2)	S(3)	L(1)	S(3)	S(3)
CO5	S(3)	S(3)	L(1)	S(3)	S(3)
W.AV	2.6	2.8	1.2	3	3

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar – Machine Learning and Artificial Intelligence

- 1. Introduction to AI-Problem formulation, Problem Definition, Hill Climbing, Depth first and Breath first, Constraints satisfaction.
- 2. Knowledge representation using Predicate logic, Resolution, Use of predicate calculus.
- 3. Version Spaces and Candidate Eliminations, Decision Tree learning.
- 4. Feature selection, Different clustering method.
- 5. Sets of First Order Rules, FOCL Algorithm, Temporal Difference Learning.

Program: M.Sc.,	Semester : IV (2022 Onwards)
Course Title: Systems Biology	Class Time: As per Time Table
Subject Code: 502402	
Name of Course Teacher	Dr. J. Joseph Sahayarayan
	Dr. P. Boomi
Mobile: +91 – 9047564087	E-mail: josephj@alagappauniversity.ac.in
+91 - 9486031423	boomip@alagappauniversity.ac.in

Systems Biology

Course Brief:

Systems biology is a broad field which explores the world of genomes and post genomic datasets and large databases. The goal of systems biology is to comprehensively understand development, physiology, metabolic and gene regulatory networks, by looking at all genes, proteins and metabolites in an organism simultaneously, rather than focusing on just one or two. An emerging engineering approach applied to biological scientific research, systems biology is a biology-based inter-disciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach holism instead of the more traditional reductionism) to biological research. One of the outreaching aims of systems biology is to model and discover emergent properties, properties of cells, tissues and organisms functioning as a system whose theoretical description is only possible using techniques which fall under the remit of systems biology. These typically involve metabolic networks or cell signaling networks. Biology is moving from molecular to modular. As our knowledge of our genome and gene expression deepens and we develop lists of molecules (proteins, lipids, ions) involved in cellular processes, we need to understand how these molecules interact with each other to form modules that act as discrete functional systems. These systems underlie core subcellular processes such as signal transduction, transcription, motility and electrical excitability. In turn these processes come together to exhibit cellular behaviors such as secretion, proliferation and action potentials. What are the properties of such subcellular and cellular systems? What are the mechanisms by which emergent behaviors of systems arise? What types of experiments inform systems-level thinking? Why do we need computation and simulations to understand these systems?

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- □ Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- □ Video-conferencing for lectures that will be sought from experts belonging to overseas reputed institutions.
- □ Case-studies and Review questions.

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also

allocate the students with a topic or based on their interests to present seminar that will

aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of thetopics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academiccareer.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar	•
As per Acad	emic Calendar	After CI	A Test-I	

Course Outline: Core: Systems Biology

- 1. This lecture examines how the 'mega data' technologies now possible through genomics, transcriptomics and proteomics can be brought together to provide a whole organism understanding of biology.
- 2. This lecture will cover the basic concepts of genome sequencing, why it is important and what there is still left to learn a basic introduction to put the remainder of the course in context.
- 3. The lecture will cover technologies for genome sequencing, conserved genes and proteins and the 'minimal gene content', hypothetical and unique genes and proteins.
- 4. This lecture will cover the use of changes in mRNA expression in different biological circumstances, including technical aspects.

5. How have the technologies learned in the above lectures been applied, particularly to the study of human disease? This lecture examines what we have gained by taking a genomics-based approach.

More books for Reading and Referencing:

 Handbook
 of
 Glycomics;
 Editors: Richard
 Cummings J.
 Pierce;
 2009

 ISBN: 9780123736000
 Essentials of Glycobiology;
 Editors: Ajit Varki, Richard D Cummings, Jeffrey DEsko,

 Hudson
 H
 Freeze, Pamela
 Stanley, Carolyn
 R
 Bertozzi, Gerald
 W
 Hart,

 and Marilynn
 E Etzler;
 2009, ISBN: 13: 9780879697709
 Evolutionary
 Genomics and Systems Biology; Gustavo Caetano-Anollés; 2010
 ISBN:

 978-0-470-19514-7
 Dischemisters
 Dischemisters
 Dischemisters
 Airlessen
 Airlessen
 2012

Principles of Biochemistry; By David L. Nelson, Michael M. Cox; 2012 ISBN: 9788808035868

		Semester – IV			
Core-XV	CourseCode	Systems Biology	Т	Credits: 4	Hours: 4
	502402				
		Unit - I			
Objective -1	To describe prote	eomic techniques in	cluding	mass spectro	ometry, 2D gel
electrophoresis, protein microarrays and qRT-PCR. To explain how proteomics can					
	be applied to clinical	l studies and biomarker	discover	<u>у.</u>	
Introduction	and scope of proteon	nics: Components of a	complex	t mixture and P	rotein sequencing;
Proteomics Pr	ms, Qirap ms/ms,	2D Get electrophoresis	n Biom	otem microaria	ys. qRT PCR and
Body fluid pro	ofiles, blood disease	profiles, diabetes profil	es, infec	tious diseases.	TC.
Outcome -1	Explain the compo	nents of a complex mi	xture, p	rotein sequenci	ing K2
	techniques, and the r	cole of proteomics in cli	nical stu	dies.	8
	-	Unit – II			
Objective -2	To explain the basi	c principles of protein	arravs a	ind computation	nalmethods for
- ~ J	analyzing proteomic	s data.		rr	
Protein arra	ys: basic principles,	, Computational methe	ods for	identification	of polypeptides,
Bioinformatics	s-based tools for anal	ysis of proteomics data	(Tools	available at Ex	PASy Proteomics
server); databa	ases (such as Inter Pro	o), Protein-protein inter	actions:	databases such	as STRINGS and
DIP; PPI Mod	DIP; PPI Modeling in biological systems.				
Outcome -2	Utilize computation	al methods and bioinfo	ormatics	tools for prot	ein K3
	array analysis and protein-protein interactionmodeling.				
	1	Unit – III	SITY	2	
Objective -3	To analyze protein	complexes and interac	tion net	works using too	ols like Cytoscape
objective 5	and Python. To und	lerstand concepts like ne	etwork tl	neory and algori	thms.
D ()				1 · D (· · , ,·
Protein com	plexes and Network	ks: Protein bindin	g site	analysis, Prote	in interaction
theory and alg	ulatory networks, Stru orithma Protoin notw	actures of regulatory net	works, I	veural Network	models. Network
Outcome 3	Analyze protein hi	nding sites interaction	networ	ks and	KA
Outcome -5	regulatory networks	s using network theory a	nd algo	rithms.	184
	regulatory network	Unit – IV	inu uigoi		
	To describe glyce	omics techniques like	glycar	microarrays	and explain the
Objective -4	jective -4 challenges and promise of glycomics. To understand related omics fields like				omics fields like
lipidomics, fluxomics and metabolomics.					
Glycomics: The Challenge and Promise of Glycomics, Identification of carbohydrates, Glycolipids,					
Glycoproteins, Glycan Microarrays and Glycan Determinants, Metaglycomes, Glycan Recognition					
Molecules, Lipidomics, Fluxomics, Biomics: systems analysis of the biome. Transcriptomics					
&Metabolomics and its applications.					
Outcome -4	Identify and charac	terize carbohydrates, gl	ycolipid	s, glycoproteins	, 174
	and other biomole	cules in the context of	glycon	nics, lipidomics	, N 4
	and other biomole	cules in the context of	glycon	nics, lipidomics	, K4

	Unit-V				
Objectiv	Dbjective -5 To explain key concepts in systems biology like integrating networks, random and scale-free networks, and computer simulation of whole cells. To understand databases related to metabolic pathways and signaling networks.				
System Simula Modeli metabo pathwa	s Biology : Introduction, Integrating Networks. Random and Scale-free Netwo ion of the whole Cell. Human Erythrocyte Model and its applications. ng, E-CELL, V-CELL and GROMOS. Simulation of cellular subsystem ites and enzymes, Signal transduction networks, Gene 5 regulatory networks; s: databases such as KEGG, EMP, MetaCyc, AraCyc.	orks. Computer . Software for s, network of orks, metabolic			
Outcom	e -5 Understand the principles of systems biology, including random and scale-free networks, and apply computer simulation techniques to model cellular subsystems.	K2			
Suggest	d Readings:				
Albe	rghina, L. and Westerhoff, H, (2005) "Systems Biology: Definitions and Persp in Current Genetics"; Springer Verlag, ISBN 978-3540229681.	ectives, Topics			
Deb	nalya Barh Vasco Azevedo, (2017) "Omics Technologies and Bio-engineeri	ng"; Academic			
Julio	Press, Volume 1: Towards Improving Quality of Life, 1 st Edition, ISBN: 9780 Collado-Vides, Ralf Hofestadt, (2002) "Gene Regulation and Metabolism Computational Approaches": MIT Press.	128047491. n: Postgenomic			
Sano	v B. Primrose & Richard M. Twyman, (2004) "GENOMICS: Application	ons in Human			
	Biology"; Blackwell Publishing Ltd.,				
And	Andrew Carmen, Darryl León, Scott Markel, (2006) "In Silico Technologies in Drug Target				
	Identification and Validation"; CRC Press Taylor and Francis Group, LLC, ISBN-13: 978-1-57444-478-0.				
A.] Mar	 A. Malcolm Campbell & Laurie J. Heyer Laurie J. Heye, (2007) "Discovering Genomics, Proteomics and bioinformatics"; Pearson, Second Edition. Marcus Frederick (2008) "Bioinformatics and Systems Biology": Springer Verlag Berlin 				
- Trian	Heidelberg, ISBN: 978-3-540-78352-7.	, 2011111			
Sang	Sangdun Choi, (2010) "Introduction to Systems Biology"; Paperback Publisher: HumanaPress, 1 st Edition.				
Mar	Marian Walhout Marc VidalJob Dekker, (2012) "Handbook of Systems Biology"; Academic				
	Press, 1 st Edition, ISBN: 9780123859440.				
Lin,	Lin, Ren-Jang, (2016) "RNA-Protein Complexes and Interactions Methods and Protocols";				
	Humana Press, 1 st Edition.				
Online Resources:					
1. https	://link.springer.com/book/10.1007/978-3-540-78353-4				
2. https	://link.springer.com/book/10.1007/978-1-59745-440-7				
3. https	https://www.routledge.com/Systems-Biology-and-Bioinformatics-A-Computational-				
App	Approach/Najarian-Najarian-Gharibzadeh-Eichelberger/p/book/9781138118034				
K1-Rei	nember K2-Understand K3-Apply K4-Analyze K5-Evaluate	K6-Create			
	Course designed by:Dr. J. Josep	oh Sahayarayan			

		Cour	se o un	onie ()			Cutton	1105		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
Average Score	3	3	3	3	3	3	3	3	3	3

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
Average Score	3	3	3	3	3

S –Strong (3), M-Medium (2), L- Low (1)Assignment

& Seminar: Systems Biology

- 1. Techniques in proteomics.
- 2. Gene expression.
- 3. 2D Gel electrophoresis and protein array.
- 4. Mass Spectrometry.
- 5. Protein sequences.
- 6. qRT PCR and proteomics.
- 7. MALDI TOP MS, QTrap MS/MS.
- 8. Identification and measurement of all small molecules.
- 9. Glycomics.
- 10. Lipidomics.
- 11. Flucomics.
- 12. Biomics.
- 13. E-CELL, V-CELL and GROMOS.

Lab-IV Small and Macromolecular Crystallography

Program: M.Sc.,	Semester: IV (2022 Onwards)		
Course Title and Code: Lab IV-Small and	Class Time: As per Time Table		
Macromolecular Crystallography			
Subject Code: 502403			
Name of the Course Teacher	Prof. J. Jeyakanthan		
Mobile: +91 - 97898 09245	Email: jjeyakanthan@alagappauniversity.ac.in		

Course Brief:

X-ray crystallography is the only available technique that enables us to visualize protein structures at the atomic level and enhances our understanding of protein function. Specifically we can study how proteins interact with other molecules, how they undergo conformational changes, and how they perform catalysis in the case of enzymes. Armed with this information we can design novel drugs that target a particular protein, or rationally engineer an enzyme for a specific industrial process. This syllabus is framed on the basis that the students will have a technical knowledge in handling the small and macromolecules techniques such as - crystallization, diffraction, data collection and structure solution.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- □ Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- □ Having an enriched professional experience on handling associated molecular biology experiments (Isolation, cloning, expression and crystallization) with sophisticates equipments and accessories
- □ Handling advanced Polarized microscopes to view crystallized biomolecules with better fine resolution to proceed further accordingly.
- □ Case-studies and Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance has been taken will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class/Lab Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior toproposed deadline
will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Performing Lab Practicals: The basic techniques concerning subjects such as Molecular or Cell biology are taught with much clarity and every student is given the opportUNITy to have hands on experience with these techniques using sophisticated instruments under the supervision of experienced/ trained personnel. After training, lab practicals are conducted to assess the student's skills to handle equipments and performing experiments with ease and maintaining the time constraints.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patentedknowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Tes <mark>t</mark> II	Assignment	Seminar
As per Acader	nic Calendar	After C	IA Test I

Course Outline: Lab-IV: Small and Macromolecular Crystallography

- \Box The course will lead to determine the crystal structures of small and macromolecules.
- □ On completion of this course students will be able to describe the differences in properties of small and macro molecular crystals.
- □ The Course content includes X-ray sources and types of detectors, diffraction experiment based on the Evald construction, process diffraction images, and data validation. Phase problem solving, protein model construction based on experimental electron density maps and choose proper algorithms for structure refinement. Usage of specific crystallographic software for structure visualization and refinement and Validate the final structures.

More books for Reading and Referencing

Introduction to Macromolecular Crystallography by Alexander McPherson; 2009,

ISBN:978-0-470-18590-2

Macromolecular Crystallography Protocols, Volume 2 Structure Determination;

Editors: Doublie, Sylvie (Ed.); 2007, ISBN:1-59745-266-1, 978-1-58829-902-4

Principles of Protein X-Ray Crystallography; Authors: Drenth, Jan, 1999, ISBN:978-1-

4757-3094-4, 978-1-4757-3092-0

 Small Angle X-Ray and Neutron Scattering from Solutions of BiologicalMacromolecules by Dmitri I. Svergun, Michel H. J. Koch, Peter A.
 Timmins, Roland P. May, 2013, ISBN:978-0-19-963953-3

				S	Semest	er – IV						
Core-XVI	Course 50240	eCode 03	Lab	o-IV: S	mall A Crysta	nd Mac llograp	cromole hy	cular	Р	Credits:4	F	Iours :8
					Uni	t - I						
Objective -	1 To Ma Co	provide acromole mpound	e knov ecular s.	vledge Crystal	and Fallization	amiliariz n, Nucle	zation v eic acids	vith m s and \$	etho Sma	ods and tec Ill Biologic	chni ally	ques in Active
Small Mole diffraction da method, strue	cule St ata colle ctural ar	ructure ection, st alysis, c	Dete tructur	rminat e deterr nations	ion: S minatic and In	Small m on methe iteraction	olecule ods, stru n analys	crysta cture i is.	alliz refii	ation meth nement and	ods Va	, X-ray lidation
Outcome - 1	De str	sign the uctures nformation	e proc of s on and	cess st small l interac	eps le molecu ction au	ading t ules an nalysis.	to deter and anal	minati yze 1	on the	of crystal structural		К3
					Ur	nit - II					1	
Objective -	2 To depe	understar ending or	nd dif n their	ferent of arrang	crystal ements	systems s of the n	s and clanar	assify decule	the s	crystalsacc	ord	ingly
Macromole	cule St	ructure	Deter	·minati	on: Cl	loning, 1	Expressi	ion, P	urifi	cation of I	Prot	ein and
Nucleic acid etc.,) X-ray MAD), struc Structural ar	l. Crysta diffracti cture re nd Intera	allization on data finement action and	n meth collec t, elect alysis.	nods (H etion, st tron de	anging ructure nsity n	g drops, e determ nap calc	Sitting ination culation,	drops methoo mode	and ds (l bu	Micro bate (MR/SIR/ M uilding and	ch r MIR Val	nethods 2/ SAD/ lidation,
Outcome - 2	Den reso	nonstrate	e the n ructure	nethods es.	s for pi	rotein cr	rystalliza	ation u	ising	ghigh	K.	3/K5
			20	n nu nu	Unit	- III	311	2.				
Objective - 3 To provide knowledge about model building methods and structurerefinement using various crystallographic software.												
Hands on Training: Synthetic Compounds- Crystallization using different methods (slow evaporation etc.) in different solvents such as methanol, ethanol etc., Structure determination using SHELXS program, Structure refinement using SHELXL, validation and analysis.Outcome -3Describe the differences between crystallization of small molecules and macromolecules and Analyze the protein crystals under X-rayK1/K4												
	bour				Unit	- IV	10	7				
Objective - 4	To a met that	comprehe hods, mo surfaces	end wi olecula s usual	ith prec ar repla lly in sr	cision c cemen nall/ma	of variou t and w acromol	is phase ith the u ecularcr	solvin use of ystalli	ng m hea zati	nethods such vy atom de on.	has riva	direct tives
Hands on T	raining	: Lysozy	yme pi	rotein -	Crysta	allization	n, Data (Collec	tion	, Demo of	CC	P4/CNS
programs, T map calculat	Three-Di tion, mo	mension del builc	al Str ling, v	ucture alidatio	determ on (Rar	nination, nachand	Structu Iran Plot	re ref	inei anal	nent, electi ysis.	on	density
Outcome - 4	Illus crys and	strate th tallograp validatio	ne alg phic so on of th	gorithm oftware he final	is to e for s structu	improv tructure ures	e maps visuali	s and zation	l u and	ses specifi d refinemen	ic nt	K2/K3
Suggested F	Reading	s:										
Marcus I X-ra Giacova P. Zanot Inte	Frederic ay Cryst zzo, C. l ti, G. C rnationa ordScie	k Charle allograp Monaco, atti, M. I Unioin nce Publ	es Lade hy, Sp H.L. A (2011) n of (lication	d and I pringer. Artioli,) "Fund Crystall	Rex Al G. Vite lament lograph	fred Pal erbo, D. cals of C ny; Oxfo	mer, (20 Milanes Crystallo ord [u.a	003), S sio, M. graphy .]: Ox	Struc Fei 7 - 7	cture Detern rraris, G. Gi Third Editic d Univ. Pr	nin lli, on"; ess,	ationby G. Gilli,
Gale Rh Mac George	nodes (1 cromole H. Stour	1999). "(cular Mo t and Ly	Crysta odels - yle H.	illograp Second Jensen	hy Ma l Editic (1989)	ade Cry on"; Aca). "X-ray	vstal Cle idemic P y Structi	ear: A Press. ure De	Gu Gu	uide for us nination - S	ers Secc	of ond

Edition"; John Wiley & Sons - A wiley-interscience Publication.

Christopher Hammond (2009). "The Basics of Crystallography and Diffraction - Third Edition"; International Unioin of Crystallography, Oxford University Press.

Car melo Giacovazzo (2014). "Phasing in Crystallography - A Modern Perspective"; Oxford University Press.

Banaszak, L. J. (2000) "Foundations of Structural Biology"; Academic Press Bourne, P.E. & Helge Weissig, H. (2003) "Structural bioinformatics"; Wiley-Liss.

Liljas, A., Liljas, L., Piskur, J., Lindblom, G. Nissen, P. Kjeldgaard, M. (2010) "Textbook of Structural Biology"; Hackensack, NJ: World Scientific.

Online Resources:

- 1. https://www.mt.com/in/en/home/applications/L1_AutoChem_Applications/L2_Crystallization .html
- 2. https://berstructuralbioportal.org/x-ray-macromolecular-crystallography
- 3. https://www.rcsb.org/docs/additional-resources/crystallography-software

K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create

Course designed by: Dr. J. Jeyakanthan

Course Outcome v S Programme Outcomes	Course	Outcome	VS	Programme	Outcomes
---------------------------------------	--------	---------	----	-----------	----------

) M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)
- 10°		and the second se		6.		(=)	111(2)
) M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)
) M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)
) M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)
) M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	<u>M(2)</u>	M(2)
2	2	2	2	2	2	2	2
	 2) M(2) 2) M(2) 2) M(2) 2) M(2) 2 	 M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) 2 2 	 M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) M(2) 2 2 2 2 	 M(2) M(2) M(2) M(2) M(2) 2 2 2 2 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.) M(2) M(2) M(2) M(2) M(2) M(2) .) M(2) M(2) M(2) M(2) M(2) .) <td< td=""><td>.) M(2) M(2) M(2) M(2) M(2) M(2) M(2) .) M(2) M(2) M(2) M(2) M(2) M(2) .) </td></td<>	.) M(2) M(2) M(2) M(2) M(2) M(2) M(2) .) M(2) M(2) M(2) M(2) M(2) M(2) .)

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	M(2)	S(3)	S(3)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	3	2.75	2.75	S(3)	S(3)

S –Strong (3), M-Medium (2), L- Low (1)

Practical, Assignment & Seminar for Lab-IV Small and Macromolecular Crystallography

- 1. Small molecule crystallization methods.
- 2. X-ray diffraction data collection, structure determination, structure refinementand Validation of small molecules.
- 3. Small molecular compounds isolated from plants or from marine source.
- 4. Cloning, Expression, Purification of Proteins, Carbohydrates, Nucleic acids.
- 5. Crystallization methods of macromolecule (Hanging drops, Sitting drops and Micro batch methods etc.,)
- 6. Macromolecular structure determination methods (MR/ SIR/ MIR/ SAD/ MAD).
- 7. Structure refinement, structural analysis and Validation of macromolecules.
- 8. WinGX platform for small molecule structure determination.

Program: M.Sc.,	Semester: IV (2022 Onwards) Credits: 6
Course Title and Code: Project work	Class Time: As per Time Table
Subject Code: 502999	A UNIVERSITY C
Name of the Course Teacher	Prof. J. Jeyakanthan
Mobile: +91 - 97898 09245	E-mail: jjeyakanthan@alagappauniversity.ac.in
Name of the Course Teacher	Prof. Sanjeev Kumar Singh
Mobile: +91 - 98944 29800	E-mail: sksingh@alagappauniversity.ac.in
Name of the Course Teacher	Dr. M. Karthikeyan
Mobile: +91 - 94869 8 <mark>1874</mark>	E-mail: karthikeyanm@alagappauniversity.ac.in
Name of the Course Teacher	Dr. RM. Vidhyavathi
Mobile: +91 - 94448 35869	E-mail: vidhyavathirm@alagappauniversity.ac.in
Name of the Course Teacher	Dr. J. Joseph Sahayarayan
Mobile: +91 - 90475 64087	E-mail: josephj@alagappauniversity.ac.in
Name of the Course Teacher	Dr. P. Boomi
Mobile: +91 -9486031423	E-mail: boomip@alagappauniversity.ac.in

Project work

Major Research Areas

- Small and Macro molecule X-ray Crystallography.
- 3D Quantitative Structure Activity Relationship (3D-QSAR).
- Human Molecular Genetics.
- Pharmacogenomics.
- Cheminformatics.
- Quantum Pharmacology.
- Computer Aided Drug Designing (CADD).

- Data mining, Data warehousing and Networking.
- Plant tissue Culture, Genetic Transformation, Plant Molecular Biology, Virology and Plant Pathology.
- Molecular Oncology, Pharmacology and Environmental Toxicology.

Course Brief:

The study of PG course in bioinformatics includes a six months project work in the thrust areas of specialization which is broadly classified into six categories keeping in mind the number of faculties present. First, is the Structural Biology and Bio - Computing where Molecular Biology concepts such as Protein Cloning, Expression, Purification and Crystallization are performed to work on the isolation of the desired protein where the structural and functional characteristics that are yet to be explored. Hence, through X-ray Crystallography one can deduce the same and collect the insight details based on these inputs computational studies such as screening, molecular dynamics simulation, quantum based approaches, structure based drug design, QSAR etc (Drug Discovery and Design, CADD & Structural Bioinformatics) are performed to identify suitable leads from commercial/natural sources for a disease – associated targets. Either way, leads identified by targeting the molecular fingerprints of an individual known as Personalized medicine (Pharmacogenomics & CADD) as this sought to be the most preferred, selected and specific approaches by the Pharma related Industries to further validate the compounds with the aid of assay to estimate its inhibitory potential against that target conferring to life-threatening diseases such as cancer, TB, Diabetes, HIV, Inference of Vitamin D - Deficiency on population through genetic studies, Implications of Vibrio species to the aquaculture residential species by the application of phage therapy. Additionally, these collected inputs such as the availability of different targets in association in many pathways (cross-talk), established compounds based on experimental evidences either commercially or from natural sources (Isolation from plants that is claimed to have therapeutic significance) is well collected, documented and maintained in the form of databases and also the information that are collected from several sources are also included. Thus, the scholars can frame their thesis based on these areas mentioned above along with updated working of methodologies within the stipulated period of time.

Reference/Text Books:

As per the area of study taken

Course Objectives: To make the students:

- Demonstrate knowledge and understanding of the molecular machinery of livingcells.
- Demonstrate knowledge and understanding of the principles and basicmechanisms of the research area.
- Use basic laboratory skills and apparatus to obtain reproducible data from biochemical experiments.
- Implement experimental protocols, and adapt them to plan and carry out simple investigations.

Course Outcomes: The student shall be able to:

- Analyze, interpret, and participate in reporting to their peers on the results of their laboratory experiments.
- Participate in and report orally on team work investigations of problem-based

assignments.

- Build on their knowledge and understanding in tackling more advanced and specialized courses, and more widely to pursue independent, self-directed and critical learning.
- Formulate hypotheses based on current concepts in the field and design, conduct, and interpret their own research projects.
- Present research results in peer-reviewed publications and in a dissertation.
- Communicate research results effectively through oral presentations at scientific seminars, conferences, and other venues.
- Write a competitive application for research funding.
- Develop ancillary skills, where necessary, to obtain positions outside of scientific research.

Teaching Methods:

- Literature review, analysis and data collection
- Case-studies and Review questions
- Allowed for interaction with Research scholars
- Daily guidance and monitoring the work flow
- Presentation

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Semester – IV						
Core	CourseCode 502999	Project Work	Credits:6	Hours :12		

=_=_=

Major Electives General Chemistry

Program: M.Sc., Bioinformatics	Semester : I (2022 Onwards)
Course Title: Elective –I General	Class Time: As per Time Table
Chemistry	
Subject Code: 502501	
Name of Course Teacher:	Dr. P. Boomi
Mobile: +91-9486031423	Email : boomip@alagappauniversity.ac.in

Course Brief:

Chemistry is a branch of science that deals with the study of the composition, properties, and reactivity of matter that includes organic chemistry, in-organic chemistry, physical chemistry etc. In bioinformatics, chemistry has a pivotal role to systematic investigation of the properties, structure, behavior of matter and the changes matter undergoes. The student will need to improve the basic aspects of chemistry andit will expose to develop in related disciplines like interaction between the chemical compounds and the bio-molecules. Hence, the syllabus is framed to provide sound knowledge and understanding of chemistry to divulge biological and biomedical science. The purpose of this syllabus is to develop scientific temper and analytical capability through learning physical concepts and their applications in pharmaceutical. This syllabus for the course covers with organic chemistry, inorganic chemistry, nano- chemistry, bio-organic chemistry, bio-inorganic chemistry and important analytical techniques to gain an insight into the basics of knowledge of chemistry. This course highlights the information regarding synthesis of drug compound using organic and in- organic materials for drug discovery, therapy, imaging and diagnosis. It will also guide the students to understand how chemistry will be used for a high technology area of Bioinformatics.

Teaching method:

- There are a number of different teaching methods used such as:
- Lecture using power point presentation
- Discussion (Boards and Blogs)
- Case studies
- Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance has been taken will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of thetopics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar
As per Acad	emic Ca <mark>le</mark> ndar	After CI	A Test-I

Course Outline: Elective: General chemistry

- **Organic chemistry:** can be describing the aromatic substances that involve the study of carbon and its compounds. It includes aromaticity, synthesis of organic compound and heterocyclic compound.
- Chemical bonding: It is one of the most important basic fundamentals of chemistry that explains how compounds form based on the electrostatic interaction and other concepts such as various bonding theory. Chemical Bonding and Acid base theory
- Nano Chemistry: It is an emerging field that involves study of unique properties associated with assemblies of atoms or molecules of nanoscale, the types of nano structures such as one, two and three dimensional. Polymer chemistry and pharmaceutical chemistry include classification of polymer with their uses and applications.
- **Bio-inorganic chemistry:** It examines the role of metals in biology, which covers the metalloprotein like hemoglobin and myoglobin, Electron transfer proteins: Active site structure and functions of ferredoxin, rubridoxin and cytochromes.
- Medicinal Chemistry: It involes the drug action and synthesis of various drug such as anyibacterial, antibiotics, antifungal and anticancer agent.

More books for Reading and Referencing

Amit Arora, "Organic Chemistry: Aromatic, Alcohols Aldehydes & Acids", (2006), Publisher- Discovery Publishing House, (**ISBN:8183561896**, **9788183561891**)

John A. Joule and Keith Mills, "Heterocyclic Chemistry", (2013), Publisher- John

Wiley & Sons, (ISBN: 1118681649, 9781118681640)

Marye Anne Fox, James K. Whitesell, "Organic chemistry", (2004), Publisher-Jones & Bartlett Learning, (ISBN: 763721972, 9780763721978)

Paul M. Dewick, "Essentials of Organic Chemistry: For Students of Pharmacy, Medicinal Chemistry and Biological Chemistry", (2006), Publisher-John Wiley & Sons, (ISBN: 0470016655, 9780470016657)

J. Newton Friend, "A text book of in-organic chemistry" (2012), Publisher-Hardpress, (ISBN: 290327793, 9781290327794)

I. David Brown, "The Chemical Bond in Inorganic Chemistry" (2006), Publisher-Oxford University Press, (ISBN: 0199298815, 9780199298815)

John C. Kotz, Paul M. Treichel and John Townsend, "Chemistry and Chemical Reactivity", (2014), 9th Edition, Publisher- Cengage Learning, (ISBN:1305176464, 9781305176461)

Geoffrey A. Ozin, and Andre C. Arsenault, (Nanochemistry: A Chemical Approach to Nanomaterials", (2015), Publisher- Royal Society of Chemistry, (ISBN:1782626263, 9781782626268)

Kenneth J. Klabunde, and Gleb B. Sergeev "Nanochemistry " (2013) 2nd Edition, Publisher- Newnes, (ISBN: 0444594094, 9780444594099)

A. Ravve, "Principles of Polymer Chemistry", (2013), Pubisher- Springer Science & Business Media, (ISBN: 1489912835, 9781489912831)

Gauri Shankar Misra, "Introductory Polymer Chemistry", (1993), (ISBN: 8122404715, 9788122404715)

S. M. Khopkar, "Basic Concepts Of Analytical Chemistry", (1998), Publisher-New Age International, (ISBN: 8122411592, 9788122411591)

John Kenkel, "Analytical Chemistry for Technicians, Fourth Edition", (2013), Publisher-CRC Press, (ISBN: 1439881065, 9781439881064)

David Van Vranken and Gregory Weiss, "Introduction to Bioorganic Chemistry and Chemical Biology", (2012), Publisher- Garland Science, (ISBN: 1135054827, 9781135054823)

K. Hussain Reddy "Bioinorganic Chemistry", (2007), Publisher-New Age International, (ISBN: 8122414370, 9788122414370)

Ivano Bertini, "Biological Inorganic Chemistry: Structure and Reactivity", (2007), Publisher-University Science Books, (**ISBN: 1891389432, 9781891389436**)

		I - Semester					
DSE-1	Course Code:	General Chemistry	Т	Credits:5	Hours:5		
	502501						
Unit-I							
Objective - 1	To learn about ba	sic idea of aromaticity, acid ba	se the	ory andorgan	ic		
	synthesis.						
Chemical Bon	ding and Acid b	ase theory: Chemical Bondi	ng: E	Bond theory,	hydrogen		
bonding, ionic l	oond, metallic bor	nd, covalent bond, sigma bond	, pi-bo	ond, bond len	gth, bond		
strength, deloc	alization, conjuga	tion, resonance, hyperconjug	gation,	and Vande	er- Waals		
forces. Free	electron theory,	Molecular orbital theory,	cond	uctor, insula	tors and		
semiconductors	. Acid base theory	: Arrhenius theory, acids and b	oases i	n protic solve	ents,		
Bronsted-Lowry	theory, Lewis th	eory, acid-base strength, theory	retical	basis of har	dness and		
softness, electro	negativity.						
Outcome - 1	Describe the syn	thesis the organic compounds	and el	loboatre the	K2		
	basic pharmaceut	tical polymer and nano chemist	try.				
	I	Unit-II					
Objective - 2	D bjective - 2 To understand the biological molecule present in the bio-organicand bio-						
	inorganic compounds						
Aromaticity, Heterocyclic Compounds and Spectroscopy techniques: Aromaticity:							
Concept of arc	maticity, non-aro	maticity and anti-aromaticity	, Huc	kel's rule, a	nnulenes,		
fulvenes. Orga	nic Synthesis: S	ynthesis of alcohols, phenol	ls, ale	dehydes and	ketones.		
Heterocyclic Co	ompound: Synthes	is of aromatic heterocyclic con	npoun	ds. Spectrosc	opy: UV-		
Vis Spectrosco	py-Beer-Lambert's	a law and its limitations, tran	nsmitt	ance, Absorb	ance, and		
molar absorptiv	ity.Infra red spect	roscopy-Basic Principle, Chara	cteris	tic absorption	h bands of		
various function	al groups.						
Outcome - 2	Gaining the know	vledge about hetrocyclic Comp	ound,		K3		
	Spectroscopy and	l nanochmeistry.					
		Unit-III					
Objective - 3	To understand th	e biological molecule present i	n the l	oio-organican	d bio-		
	inorganic compo	unds.					
Nanochemistry	and Polymer S	Science: Nano Chemistry: D	efiniti	on, One-Din	nensional,		
Two-Dimension	al and Three-Di	mensional nanomaterials, sta	bility,	properties (nanowire,		
nanorod and na	notube), self asse	mbly nanoparticles, Fundamer	ntals o	of Drug Nand	oparticles,		
combination of	drugs with their c	controlled drug delivery system	n. Pol	ymer chemis	try: Basic		
concepts of poly	mers, classificatio	on: Natural, synthetic, linear, cr	oss lii	nked, network	x, plastics,		
elastomers and	fibres. Structure an	nd uses of pharmaceutical poly	mers	such as cyc	lodextrin,		
Ethyl cellulose,	polymethacrylate	e, polyvinyl alcohol and polyvin	nyl py	rrolidone.			
Outcome - 3	Understanding t	he biological molecule pres	sent i	n the bio-	K2		
	inorganic compo	unds and drug compound with	theira	citons.			

Unit-IV							
Objective - 4 To Study the heme protein, non heme protein and electrontransfer							
proteins.							
Bioinorganic Chemistry: Essential Trace Element for Human body, Biological Oxidation							
and Reduction Reactions for trace element. Overview of Heme and non-heme proteins-							
Structure and functions of Hemoglobin, Myoglobin, Hemerythrin and Hemocyanin. Structure							
and functions of electron transfer proteins such as Iron-sulphur proteins (Ferred	loxins,						
Rubredoxin and Cytochromes). Copper iron proteins-Blue copper proteins (Azurin	n and						
Plastocyanin) and Superoxide dismutase. Structure and function of vitamin B12.							
Outcome - 4 acquiring knowledge about how to synthesis the antibiotics and other infectious disease related drugs	K4						
Unit-V							
Objective - 5 To sudy the sthtnesis of various small maolecues and its uses							
Medicinal Chemistry: Introduction to Drugs-Definition, Sources and classification of	drugs,						
Drug action in human body, Chemistry of antibiotics and related drugs with their me	ode of						
action and side effects (Benzathine penicillin, Ampicillin, cis-platin, Chloroquin	e and						
Amodiaquine). Synthesis of the representative drugs of the following cl	lasses:						
Antiinflammatory agents (Aspirin, paracetamol), Antibiotics (Chlorampher	nicol),						
Antibacterial and Antifungal agents (Sulphonamides; Sulphanethoxazol, Sulphacetamide),							
Antiviral agents (Acyclovir) and Anticancer agent (Chlorambucil).							
Outcome - 5 Explain the and differentiate the different antibiotics and tuses	K3						
Suggested Readings:							
 Gowariker, V. R., Viswanathan, N. V., Jayadev Sreedhar, N. V. (2008). Polymer Science. (1st Ed). New Age International Pvt. Ltd. Gopalan, R. (2009). Inorganic Chemistry. Universities Press. Cammack, R. (1999). Iron-Sulfur Proteins. Academic Press. Eldik, R. V. (2004). Advances in Inorganic Chemistry. Vol-55, Publisher-Elsevier. Ahuja, S., Jespersen, N. (2006). Modern Instrumental Analysis. Vol-47, Elsevier. Agrawal, J. P., Hodgson, R. D. (2007). Organic Chemistry of Explosives. John Wiley & Sons Ltd. 							
C., Houdy P., Lahmani, M. (2008). Nanomaterials and Nanochemistry. Springer S	Science						
 & Business Media. Lewis, A. (2009). Drug-Device Combination Products: Delivery Technologies and Applications. Woodhead Publishing series in Biomaterials. Elsevier, Thassu, D., Deleers, M., Pathak, Y. (2007). Nanoparticulate Drug Delivery Systems. Edition-Informa Healthcare USA, Inc. Atul, S. (2010). The Pearson Guide to Objective Chemistry for the AIEEE. Pearson Education India. Watson, D. G. (2011). Pharmaceutical Chemistry E-Book. Publisher-Elsevier Health Sciences. 							
Bhattacharjee, M. K. (2016). Chemistry of Antibiotics and Related Drugs. Publisher- Springer							
House, J. E. (2012). Inorganic Chemistry. (2nd Ed.) Publisher-Academic Press.							
Clayden, J., Greeves, N., Warren, S. (2012). Organic Chemistry. (2nd Ed.). OUP Oxfor Kaim, W. Schwederski, B. Klein, A. (2013). Bioinorganic Chemistry-Inorganic Elemon	ord. ents						
in the Chemistry of Life: An Introduction and Guide. (2nd Ed.). John Wiley & Sons.							

Online Resour	ces:						
1. https://www.geeksforgeeks.org/chemical-bonding/							
2. https://www.scimagojr.com/journalsearch.php?q=25786&tip=sid&clean=0							
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create							
Course designed by: Dr.P.Boomi							

Course Outcome VS Programme Outcomes

CO1 S(3) M(2)	S(3)	M(2)	~					
		11(2)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)
CO2 S(3) S(3)	S(3)	M(2)	S(3)	M(2)	L(1)	S(3)	M(2)	M(2)
CO3 M(2) M(2)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	L(1)	M(2)
CO4 S(3) M(2)	L(1)	M(2)	L(1)	S(3)	M(2)	L(1)	M(2)	S(3)
CO5 M(2) L(1)	L(1)	L(1)	M(2)	S(3)	L(1)	M(2)	L(1)	L(1)
W.AV 2.6 2	2	1.8	2.2	2.8	1.8	2.2	1.8	2.2

S – Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

PSO1	PSO2	PSO3	PSO4	PSO5
S(3)	S(3)	S(3)	S(3)	S(3)
M(2)	M(2)	M(2)	S(3)	S(3)
L(1)	M(2)	M(2)	S(3)	S(3)
S(3)	L(1)	M(2)	S(3)	S(3)
L(1)	S(3)	L(1)	S(3)	S(3)
2	2.2	2	3	3
	PSO1 S(3) M(2) L(1) S(3) L(1) 2	PSO1 PSO2 S(3) S(3) M(2) M(2) L(1) M(2) S(3) L(1) L(1) S(3) L(1) S(3) 2 2.2	PSO1 PSO2 PSO3 S(3) S(3) S(3) M(2) M(2) M(2) L(1) M(2) M(2) S(3) L(1) M(2) L(1) S(3) L(1) S(3) L(1) M(2) L(1) S(3) L(1) 2 2.2 2	PSO1 PSO2 PSO3 PSO4 S(3) S(3) S(3) S(3) M(2) M(2) M(2) S(3) L(1) M(2) M(2) S(3) S(3) L(1) M(2) S(3) L(1) S(3) L(1) S(3) L(1) S(3) L(1) S(3) 2 2.2 2 3

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar – General Chemistry

- 1. Write a brief note on aromaticity and anti-aromaticity.
- 2. Explain the detail about annulenes and fulvenes.
- 3. How to synthesis of primary and secondary alcohol.
- 4. Define the structure and application of pyrrole, and imidazole.
- 5. Give a detailed account on SN1 and SN2 reaction and mechanism.
- 6. Discus the Bimolecular reaction and mechanism.
- 7. Define neighboring group participation and leaving group.
- 8. Describe the Vander-Waals forces and Molecular orbital theory.
- 9. Types of chemical bonding.
- 10. Structure and uses of polymethacrylate, polyvinyl alcohol.

Program: M.Sc.,	Semester: (2022 Onwards)
Course Title and Code:	Class Time: As per Time Table
Fundamentals of Computing	
(Elective-I)	
Subject Code: 502502	
Name of the Course Teacher	Dr. RM. Vidhyavathi
Mobile: +91 9444835869	E-mail: vidhyavathirm@alagappauniversity.ac.in

Course Brief:

Computer technology's has impacts on individuals and our world. It helps to access worldwide sources of information; presenting ideas orally, graphically and in writing. This course examines the interaction between information and methods of communication technology. It explores the impact that technology has on individuals and organizations and the effects of current technology infrastructure plus use, duplication and transmission of information in our world. The course links technology with communication to provide students with access to a wealth of data and information, both locally and globally. The fundamental of computing is designed to familiarize students with computers and their applications. It will help students to learn fundamental concepts of computer hardware and software and become familiar with a variety of computer applications. Students will investigate internet based application and also includes activities that explore social and ethical issues related to computers. Students will exhibit proficiency with software applications and demonstrate knowledge of computer technology and components to aide in their understanding of data and information. After learning this course, it helps students in the development of applications related to data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to study of biological, behavioral and social system. It also help biology student to learn the complicated biological systems and to organize, share or visualize the vast amount of biological data.

Technical Publications

- 1. Curtis Frye, (2003) Step by Step Microsoft Excel 2003, Microsoft Press.
- 2. Leon, A., Leon, M. (2000) "Introduction to Computers"; Vikas Publishing House.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Case-studies and Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance has been taken will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar	
As per Acad	emic Calendar	After CI	A Test-I	

Course Outline: Elective-I: Fundamentals of computing

- On completion of the course the students will be able to understand the fundamentals of computer and its organization.
- It will also allow student to concentrate on computer networking and datasecurity.
- Also gives knowledge to the student about internet and its applications.

More books for Reading and Referencing

Fundamentals Of Computer Algorithms - 1998 Horowitz, Galgotia Publications and **(ISBN: 8175152575, 9788175152571)**

Fundamentals of Computing and Programing – 2008

A.P.Godse, D.A.Godse, Technical Publications and

(ISBN: 8184315090, 9788184315097)

Computer Fundamentals – 2004

Larry Long, Dreamtech Press and

(ISBN: 8177223674, 9788177223675)

			Majo	r Elective	<u>,</u>			
DSE	C	ourse Code: 502502	Fundamenta	ls of Com	puting	Т	Credits:5	Hours:5
			U	nit-I	t			·
Objective - 1		Identify type computers in	es of computers, nteract with other	how they computin	process i 1g system	nform s and	ation and ho devices.	w individual
Overview a	nd C	Organization	of a Computer:	Computer	system,	storag	e, devices, n	nemory, etc,
Types of Pi	roces	sing: Batch,	Real-Time, Onl	ine, Offlin	ne, Types	s of r	nodern com	puters: The
workstation,	The	Minicompute	r, Mainframe Co	mputers, l	Parallel P	rocess	ing Compute	er, The
Super Comp	uter,	etc						
Outcome - 1		Understand architecture,	the basics database and net	of c works	omputer	sy	stem, its	K2
			Ur	nit-II				
Objective - 2		Identify how relating to c	v to maintain con omputer hardwar	nputer equ e	iipment ai	nd solv	ve commonp	roblems
Software Co hardware and Systems: Int management	once l sof trodu and	pts: Concepts tware, Types action, Proces Security. Intro	of flowcharting of software: Syst s management, duction to Wind	g, Algorith em softwa Memory 1 ows/Unix/	nm develo are and A managem Linux	opmer pplica ent, F	nt, Relations ation softwar file manager	hip between e. Operating nent, Device
Outcome - 2		Apply the ba familiar with	sic concepts, terr the use of IT too	ninology c ols.	of comput	er sci	enceand	K3
			Un	it-III	-			•
Objective - 3		Identify net	work fundamenta	ls and the	benefits a	and ris	sks of netwo	rkcomputing
Computer I Networking modem, cell optics, Micro	Netw gad ular owav	rorking: OSI gets (Router, modem, etc); re, Satellite, et	Reference Mode Switch, etc); I Communication c).	el, topolog Data Com Links (Wi	gies and p munication re pairs, C	orotoco on (IS Coaxia	ols, designin DN, VPN, Il cables, Fib	g networks, DSL, cable er
Outcome - 3		Explore new the issues rel	IT techniques in ated to security.	n various a	applicatio	ons an	d toidentify	K4
		-	Un	it-IV				
Objective - 4		Identify t communicat	he rel <mark>at</mark> ionship ions networks (l	betwo ike the te	een co lephone r	mpute netwoi	r networ k) and theIr	ks, other nternet
Data Secur	rity:	Data securi	ty fundamentals	: types of	of attack	s, fir	ewall, pack	et filtering,
classification	1 of	data security	threats, protection	n mechan	nism (autł	nentica	ation, access	control and
access rules), Er	cryption/Deci	ryptions techniqu	ies, An ov	verview c	of Cor	nputer virus	es: How do
they get tran	nsmit	ted? What are	e the dangers? G	eneral Pre	ecautions	to be	taken, Curre	ent & future
technologies	(Gr	id Computing	VPN, wireless,	mobile co	mputing,	biome	etrics etc.	
Outcome - 4		Demonstrate	basic file manag	ement tecl	hniques			K2
				[]nit-V	1			
Objective - 5		Identify diffe	erent types of inf	ormation s	ources or	the Iı	nternet	
Internet: T	he Ir	ternet and its	Resources. Inte	rnet proto	cols. serv	vices.	and related	erminologies
Web brows	sers.	customizing	browsers. Bl	ocking no	opup wi	ndows	s, Internet	programming
languages.	,			0 P	I F		,	1 8
Outcome - 5		Use CCRL or	line tools					K6
Sucome 5								110

Suggested Readings:

- V. Rajaraman, Neeharika Adabala (2014) "Fundamentals of Computers"; PHI learningPrivate limited, New Delhi, Sixth Edition.
- ITL Education Solutions Limited, 2011, "Introduction to Computers", Pearson Education India, Second Edition.

Andrew S. Tanenbaum, David J. Wetherall. (2012) "Computer Network"; PearsonEducations.

- Danny Briere, Walter R. Bruce, (2011)," Wireless Home Networking For Dummies", John Wiley & Sons, Third Edition.
- John R. Levine, (2010),"The Internet For Dummies", John Wiley & Sons Twelfth Edition. John, R., Levine, Young, M.L and Baroudi, C. (2007) "The Internet for Dummies", Willy Publishing Inc, Eleventh Edition.

Jan Vitek, Christian D. Jense, (2007), "Secure Internet Programming", Springer.

R.G. Dromey, (2007), "How to Solve it by Computer", Pearson Education, Fourth Reprint. Chris McNab, (2007)," Network Security Assessment ", O'Reilly Media, Second Edition. D.A. Godse A. P.Godse, (2006), "Computer Organization and Architecture"

Online Resources:

1. https://testbook.com/computer-awareness/computer-fundamentals

2. https://www.disputesoft.com/the-fundamentals-of-data-security/

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create			
	14	Course designed by: Dr.RM.Vidhyavathi						

Course Outcome VS Programme Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	M(2)	M(2)	-7	L(1)	M(2)	M(2)	÷.	L(1)	-	S(3)
CO2	M(2)	M(2)	L(1)	L(1)	M(2)	M(2)	6-	L(1)	-	M(2)
CO3	S(3)	M(2)	M(2)	L(1)	M(2)	M(2)	L(1)	-	-	L(1)
CO4	M(2)	M(2)	M(2)	M(2)	M(2)	S(3)	L(1)	L(1)	-	L(1)
CO5	M(2)	M(2)	L(1)	M(2)	S(3)	S(3)	M(2)	L(1)	M(2)	M(2)
W.AV	2.2	2	1.2	1.4	2.2	2.4	0.8	0.8	0.4	1.8

S-Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

		1505	1504	r505
M(2)	S(3)	M(2)	M(2)	S(3)
L(1)	M(2)	L(1)	M(2)	S(3)
L(1)	M(2)	L(1)	S(3)	S(3)
L(1)	M(2)	M(2)	M(2)	S(3)
L(1)	M(2)	M(2)	M(2)	S(3)
1.2	2.2	1.6	2.2	3
	VI(2) L(1) L(1) L(1) L(1) L(1) L(2)	$\begin{array}{c ccc} M(2) & S(3) \\ L(1) & M(2) \\ L(2) & M(2) \\ L(2) & M(2) \\ L(2) & M(2) \\ L(2) & M(2) \\ L(3) & M(3) \\ L(3) $	$\begin{array}{c ccccc} M(2) & S(3) & M(2) \\ L(1) & M(2) & L(1) \\ L(1) & M(2) & L(1) \\ L(1) & M(2) & M(2) \\ L(1) & M(2) & M(2) \\ L(1) & M(2) & M(2) \\ L(2) & L(2) & L(2) \\ L(2) & L(2) & L(2) \\ L(2) & M(2) & M(2) \\ L(2) & M(2) \\ L(2) & M(2) & M(2) \\ L(2) & M(2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar - Fundamentals of computing

- 1. Describe the organization of computer.
- 2. Brief about software and its applications.
- 3. Explain computer networking and data communication in detail.
- 4. An overview of computer viruses.
- 5. Internet and its resources.
- 6. Encryption/Decryptions techniques.
- 7. Internet protocols.
- 8. OSI Reference Model.
- 9. Types of modern computers.
- 10. Different types of web browsers.

Program: M.Sc., Bioinformatics	Semester : (2022 Onwards)
Course Title: IPR, Biosafety and Bioethics Subject Code: (502503)	Class Time: As per Time Table
Name of Course Teacher	Dr. J. Joseph Sahayarayan
Mobile: +91 9047564087	E-mail:josephj@alagappauniversity.ac.in

IPR, Bio-safety and Bioethics

Course Brief:

The course introduces students to Intellectual Property (IP) Law in general and its two common categories: Industrial Property (mostly patents) and Copyright. Intellectual Property is undoubtedly perceived as one of the core fields in the emerging area of law, the need specialized professionals. The course provides an overview of the

main principles and legal rules of IP Law, focusing specifically on the theoretical connections between IP and academic/scientific works/studies and on the IP issues with which the students are likely to come into contact in their different areas of knowledge. The course on Intellectual Property Rights, Biosafety and Bioethics covers all aspects of creations of the intellect (Images, inventions, literary works, artistic works etc.), Patent application, rules essential for patents, genetically modified crops and plants with their impacts, general ethical issues in handling transgenic plants, animals and microorganisms at laboratory etc. It also deals with new and upcoming areas like ethical issues associated with embryonic stem cells, genetic testing and regulatory approval to conduct human clinical trials. This course has been designed to give the students a holistic understanding of the subject. The concept of IP, its creation and how it should be protected are the major key points which will be discussed during this course.

Teaching Methods: The mode of teaching is based on the following learning activities:

- Lectures covering the theoretical part will be delivered using PowerPoint presentations.
- A new set of problems and issues that are worthy of exploration related to this course will be conversed.
- Case studies and questions.

Attendance: The students are expected to attend the classes regularly, since regular attendance is essential to gain academic achievement. As per the University norms, the students having a minimum scale of 70-75% attendance are only qualified to write their end-semester examinations.

Punctuality: Punctuality is the most important quality for the student to be followed and maintained to achieve success. Students who arrive late by 10 mins to the class without any vital reason will be marked absent in the attendance register. On the other hand, valid excuse including personal or medical emergency is acceptable, with prior consent by the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking practice and much more that will provide a wholesome enriched classroom experience. When students participate, they learn from one another and gain their knowledge better.

Submission of Assignment: Assignments are given to students in order to apply the concepts

for deeper understanding of the subject. Therefore, each student will be allocated two assignments for the course, covering the entire topic. Students will be given deadline to submit the assignment by the course instructor and good preparation of assignment will help the students for their final exams.

Presentation of Seminar: Apart from the assignments, students are supposed to give an oral presentation during the class seminar hours in their assigned topic. The concerned instructor will encourage the participants to ask valid questions during seminar presentation in order to put up their confidence levels and communication skills. In addition, students will be able to gain information and can be updated in their course.

Preparedness: At the end of every class, the concerned instructor conveys the students about the details that will be handled in the next class to increase the student's awareness related to the topics.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patentedknowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Depending upon the requirement of student's possibility, the course syllabus will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Scheduled dates for the various activities related to the course

CIA Test I	CIA Test II	Assignment	Seminar
As per Academic Calendar		After CIA Test I	

Course Outline: Elective: IPR, Bio-safety and Bioethics

- An outline of Intellectual property rights- World Trade Organisation (WTO) WTO Agreements- General Agreement on Tariffs and Trade (GATT) General Provisions and Basic Principles-Protection of different types of plant variety.
- Types of Intellectual property rights-TRIPs -Trademarks and copyrights-act and law. Procedures for GMOs intended for direct use-risk assessment-risk managementhandling, transport, packaging and identification of GMOs.
- Patenting and the Procedures Involved in the Application for Grading of a Patent

-Steps to a Patent - Compulsory Licenses - Patent Cooperation Treaty (PCT)- Some case studies-Beneficial role of Transgenic plants and animals.

- Rules for the manufacture, use/import/export and storage of hazardous microorganisms/genetically engineered organisms or cell.
- An Overview of the Legal and Socio-economic Impacts of Biotechnology Biosafety Regulations-Good laboratory practices-Different types of containment.
- Bioethics introduction-Various ethical issues related to genetic studies, human genome project-stem cell applications and ethical issues in stem cell research-cloning- instrumentality.

More books for Reading and Referencing

An Introduction to Intellectual Property Rights-Manju Pathak

Publisher: New India Publishing Agency, 2013. (ISBN: 978-93-833-0512-4)

Intellectual Property Rights- Neeraj Pandey, Khushdeep Dharni

Publisher: PHI Learning Pvt. Ltd-New Delhi, 2014. (ISBN: 978-81-203-4989-6)

WIPO Intellectual Property Handbook- Wipo Publication

Publisher: WIPO 2004, Second Edition. (ISBN: 978-92-805-1291-5)

Bioethics and Biosafety- M. K. Sateesh

Publisher: I. K. International Pvt Ltd, 2008. (ISBN: 978-81-906-7570-3)

Bioethics and Biosafety in Biotechnology-V. Sree Krishnan

Publisher: New Age International (P) Limited, New Delhi, 2007. (ISBN: 978-81-224-2248-1)

IPR, Biosafety and Bioethics- Deepa Goel, Shomini Parashar

Publisher: Pearson Publication, First edition, 2013. (ISBN: 978-93-325-1424-9)

Patent law - P Narayanan

Publisher: Eastern Law House; 3rd edition, 1998. (ISBN: 978-81-717-7090-8)

Introduction to Bioethics- John A. Bryant, Linda Baggott la Velle, John F. Searle

Publisher: Wiley publications, 2005. (ISBN: 978-0-470-02198-9)

		Major Elective						
DSE	CourseCode: 502503	Bio-safety, Bioethics and IPR	Т	Credits: 5	Hours :5			
	Unit - I							
Objective -1	Dbjective -1 To describe the role of international institutions like WTO, WIPO, and IBSC in relation to intellectual property rights. To understand agreements like TRIPS and acts like the Plant Variety and Farmers' Rights Act							
Concept and Role of International Institutions: Introduction of IPR, General Agreement on Trade and Tariff (GATT) and World Trade Organizations. Establishment and functions of GATT, World Trade Organization (WTO) and World International Property Organization (WIPO). WTO Summits, Role of Integrated Business Solution Center (IBSC) and Review Committee on Genetic Manipulation (RCGM), Production of Plant variety and formers right act.								
Outcome -1	Explain the conc GATT, WTO, and	epts and roles of international d WIPO, in the context of IPR a	l instituti and biosa	ions, such as fety.	K2			
	-	Unit – II						
Objective -2	To define differe copyrights, and tra	nt types of intellectual propert ade secrets.	ty rights	like patents,t	rademarks,			
Patent and C mark, Trade Production of	opyright: TRIPS, secret copy right, Traditional Knowle	Different types of intellectual Geographical distribution o edge, Impact of GM Crops and	property n biolog GM Food	rights (IPR), ical diversity ls.	Patents, Trade v, Obligations,			
Outcome - 2	Understand different implications on bi	rent types of intellectual propological diversity and tradition	perty rig al knowl	hts and their edge.	K2			
		Unit – III	6					
Objective -3	To explain India resources. To und	n patent law and discuss ca erstand the benefits of transgen	se studie ic plants	es of patents and animals.	on biological			
Patent Law: I case. Case stu- of transgenic p	Patent application, I dies on patents (Ba blants and animals.	Rules governing patents, Licens smati rice, Turmeric, Neem, et	sing - Fla c.). India	vr Savr™ tom n Patent Act,	ato as a model 1970. Benefits			
Outcome -3	Analyze patent ap on patents, such a	plicatio <mark>ns,</mark> rules governing pate s Basmati r <mark>ice</mark> , Turmeric <mark>, a</mark> nd N	ents, an <mark>d</mark> Jeem.	case studies	K4			
	1	Unit – IV						
Objective - 4	To describe diffe biosafety policies	rent levels of biosafety and c , GLP, and GMP in relation to l	containme biotechno	ent. To under ology intellect	rstand national ual property.			
Intellectual	property in Bio	technology: Introduction an	nd diffe	erent levels	of biosafety,			
Microorganism in transgenic	n according to path plants, Good Labo	oratory Practices (GLP). Conta	India, Ge ainments	neral guidelir - Types, Nati	ional biosafety			
Manufacturing	w, Germplasm con	iservation and Cross border mo	overnent.	introduction 1	O OIVIP (GOOD			
Outcome -4	Know the applica practices (GLP), biotechnology res	tion facts about biosafety guide and good manufacturing earch andproduction.	lines, goo practices	od laboratory (GMP) in	К3			

	Unit-V					
Objective -5	To discuss about general ethical issues related to the release of transgenic organisms and the use of technologies like stem cells, genetic testing, and human clinical trials from a bioethics perspective.					
Bioethics: Int transgenic pla Genetic testing	troduction of bioethics, General ethical issues related to environmental release ants, animals and microorganisms, Ethical issues related to embryonic stem ce g and screening, human clinical trials and drug testing.	of ells,				
Outcome -5	Evaluate the ethical implications of biotechnology research, including environmental release of transgenic organisms, embryonic stem cells, and human clinical trials.					
Suggested Re	adings:					
Recombinat Techno	nt DNA safety guidelines, (1990), Department of Biotechnology, Ministry of Science ology, Government of India, New Delhi.	÷&				
Deepa Goe 978933	el; Shomini Parashar, (2015) IPR, Biosafety and Bioethics, Pearson India, ISB 32514249.	3N:				
Revised gu Ministr	idelines for research in transgenic plants, (1998), Department of Biotechnology of Science & Technology, Government of India, New Delhi.	gy,				
Subbaram, 1 2 nd Ed	N. (2007) "Patent Law Practices and Procedures" Pharma Book Syndicate, Hyderaba	ad,				
M. K. Satee	sh, (2008) Bioethics and Biosafety, K. International Pvt Ltd.					
Robert Din Cambri	gwall, (2008) Cambridge textbook of bioethics, Cambridge University Preidge, ISBN -13: 978-0-521-69443-8.	ess,				
Glick, B.R. DC, 4 ^{tl} Publish	, and Pasternack, J.J. (2010) "Molecular Biotechnology"; ASM Press, Washington h Edition. Chawla, H.S. (2011) "Introduction to Plant Biotechnology"; Oxford & II hing Co. Pvt. Ltd. 3 rd Edition.	on, BH				
Shomini Pa 978813	arashar, Deepa Goel, (2013) IPR, Biosafety and Bioethics, Pearson India, ISB	3N:				
Online Res	ources:					
1. ttps://ww biotecht	ww.taylorfrancis.com/books/edit/10.1201/9781003179177/biosafety-bioethics nology	-				
K1-Remember	r K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create					
KI-Kemember	r K2-Understand K3-Apply K4-Analyze K3-Evaluate K6-Create					

Course designed by: Dr. J. Joseph Sahayarayan

Course Outcome VS Programme Outcomes										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	M(2)	S(3)	L(1)	-	S(3)	-	S(3)	S(3)	S(3)
CO2	M(2)	S(3)	S(3)	L(1)	L(1)	S(3)	L(1)	S(3)	S(3)	S(3)
CO3	M(2)	S(3)	S(3)	M(2)	-	S(3)	-	S(3)	S(3)	S(3)
CO4	M(2)	S(3)	S(3)	M(2)	L(1)	S(3)	L(1)	S(3)	S(3)	S(3)
CO5	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	L(1)	S(3)	S(3)	S(3)
W.A	2	2.8	3	1.6	0.8	3	0.6	3	3	3
V										

S –Strong (3), M-Medium (2), L- Low (1)

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	-	L(1)	S(3)	S(3)
CO2	L(1)	L(1)	M(2)	S(3)	S(3)
CO3	M(2)	L(1)	M(2)	S(3)	S(3)
CO4	M(2)	L(1)	M(2)	S(3)	S(3)
CO5	M(2)	M(2)	M(2)	S(3)	S(3)
W.AV	1.6	1	1.8	3	3

Course Outcome VS Programme Specific Outcomes

Assignment & Seminar Elective:

- 1. Establishment and functions of GATT, WTO and WIPO.
- 2. Explain transgenic plants and its beneficiary role.
- 3. Write short notes on Biosafety and its different levels.
- 4. Derive the government patent rules.
- 5. Give an account on FLAVA SAVRtm turmeric as model case.
- 6. Explain WTO summit and WTO agreements.
- 7. Write a short note on environmental impact of genetically modified plants.
- 8. Explain the ethical issues related to research in embryonic stem cell cloning.
- 9. Impact of GM crops in agriculture.
- 10. Discuss about GATT's principle of reciprocal tariff liberalization.

S – Strong (3), M-Medium (2), L- Low (1)

Biosensor

Program: M.Sc.,	Semester : (2022 Onwards)
Course Title: Biosensor	Class Time: As per Time Table
Subject Code: 502504	
Name of Course Teacher:	Dr. P. Boomi
Mobile: +91 9486031423	E-mail : boomip@alagappauniversity.ac.in

Course Brief:

Biosensor comprises a hybrid course that integrates a natural bio-recognition element like cell, enzyme, antibody etc. Biosensors are emerging analytical tools for the analysis of bio-material samples to gain an understanding of their bio-composition, structure and function by converting a biological response into an electrical signal. This course can be providing diverse applications like medicine, biomedical research, drug discovery, diabetes, environmental monitoring, security and military. The syllabus is focused on sensor, biosensor, nanomaterials based biosensor, medical biosensor and enzyme based biosensor. This course is also providing in the general principles of

sampling analysis, statistical presentation and manipulation of data. It provides the basic science concepts required to understand the design and application of biosensors for the students. It is expected that students will get ample scope to learn and update knowledge through their active students in the lectures, discussions or demonstrations and suitable hands-on experiments. Also assignments and case studies will be conducted to stimulate research motivation of the students.

Teaching method will be based on the following activities:

- Lecture using power point
- Discussion (Boards and Blogs)
- Case studies
- Review questions

Attendance: Attendance and participation are vital to the student's success in this course. Students are expected to attend class every day. Minimum attendance to be eligible to takeend-semester-examination is 80%. It is also essential that the students study regularly.

Punctuality: Punctuality is very important in the course, because if student are late, you not only waste your time, but other student's. You will also disturb others when you go into the lecture class or laboratory after the class begins. Therefore, please arrive at the class on time. Names of late students will be recorded by mentor and marks from Course performance will be deducted. An excuse for being absent from class shall be a medical or personal emergency acceptable at the discretion of the Head of the Dept.

Class Participation: Class participation and interaction helps to form a complete educational experience. However, class participation and interaction is to be relevant to course content and context. Deviant behavior may lead to dismissal or suspension.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate

the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar
As per Acade	emic Calendar	After CI	A Test-I

ALAGAPPA UNIVERSITY

Course Outline: Biosensor (502504)

- The course is to give a general overview of basic aspects and classification of sensor and biosensor.
- Nanomaterials based Biosensor: Nanomaterials fabrication can be utilized to manufacture nano-biosensors, which have very high sensitivity and can be applied in biomedical diagnostic.
- **Medical biosensor:** it covers the biosensors for medical oriented applications and types of medical biosensors.
- Enzyme based biosensor: it can be used to study, how to apply the variety of enzyme as biosensor and also study the glucose monitoring in blood sample.

More books for Reading and Referencing

Donald G. Buerk, "Biosensors: Theory and Applications", (1995), Publisher-CRC Press, ISBN: 0877629757, 9780877629757 Xueji Zhang, Huangxian Ju and Joseph Wang, "Electrochemical Sensors, Biosensors and their Biomedical Applications" (2011), Publisher- Academic Press, ISBN: 008055489X, 9780080554891 Jon S. Wilson, "Sensor Technology Handbook", (2005), Publisher-Newnes, ISBN: 0750677295, 9780750677295 Alexandru Grumezescu, "Nanobiosensors", (2016), Publisher- Academic Press,

ISBN: 0128043725, 9780128043721

Zoraida P. Aguilar,"Nanomaterials for Medical Applications", (2012), Publisher-

Newnes, ISBN: 0123850894, 9780123850898

Seamus Higson, "Biosensors for Medical Applications", (2012), Publisher-Elsevier,

ISBN: 0857097180, 9780857097187

Ursula E. Spichiger-Keller, "Chemical Sensors and Biosensors for Medical and Biological Applications" (2008), Publisher- John Wiley & Sons, **ISBN: 3527612262**, **9783527612260**

Man Bock Gu, miKg niS-kaH, "Biosensors Based on Aptamers and Enzymes", (2014),

Publisher-Springer, ISBN: 3642541437, 9783642541438

Zhiwei Zhao, knaiKg niaKg, "Enzyme-based Electrochemical Biosensors", (2010),

Publisher-INTECH Open Access, ISBN: 9537619990, 9789537619992

DSE	Course Code: 502504	Biosensor	Т	Credits:5	Hours: 5				
Unit - I									
Objective - 1	To understand t technologies.	he fundamentals of basic bio	sensor	with their prir	nciples and				
Sensor: Introduc	tion and classification	tion, history, principles of phy	sical an	d chemical, me	chanism of				
mechanical, elect environmental me	trical, thermal, m onitoring applicatio	agnetic, optical and chemical ns	sensors	. Medical diag	nostic and				
Outcome - 1	Be able to know h	ow to use bio-molecules as biose	nsor.	ŀ	Κ2				
		Unit – II							
Objective - 2	Preparing students	s to build a career in bio-inspired	materials	s and devices.					
Biosensor: Definition through the Avidiand Glucose biose	nition, Introduction in-Biotin modified s ensors.	n of Avidin-Biotin mediated bio system, microbial, biological oxy	osensor, gen dem	immobilization and biosensor, I	of enzyme Luminescent				
Outcome - 2	Be able to analy applications	yze what types of material are	e used i	for biomedical	ζ4				
		Unit – III							
Objective - 3	Objective - 3 Making aware of latest principles and techniques of nanomaterials based biosensor medical biosensor and enzyme biosensor								
Nanomaterials nanodevices, nan	based Biosensor: ocrystalline and car	Introduction and challenges bon nanotube based biosensor.	of bios	ensor. Nanoma	terials and				
Outcome - 3	Be able to use mu	ltivariate data analysis.		ŀ	Κ4				
		Unit– IV							
Objective - 4	Enriching scientif applications.	fic temper in the field of bio	-se <mark>nsin</mark> g	, bio-imaging	for clinical				
Medical Biosen	sor: Introduction	to biosensors for medical app	lications	. Types: weara	ble sensor,				
temperature sense	ors, mechanical ser	nsors, electrical sensors, biosens	sor for a	lrug testing and	discovery.				
Electrochemical I	DNA biosensor.	ANDLO EXCELLS							
Outcome - 4	Be able to design	a biosensor system for a specific a	analyte.	ŀ	K6				
		Unit-V							
Objective - 5	Updating student biosensors.	ts with the advanced technique	ues and	totally integra	ted various				
Enzyme based B	Biosensor: Urea, sir	ngle enzyme, mutable enzyme, or	rganic pl	nase enzyme, bio	otanical and				
yeast based biose	nsors. Theory of en	zyme biocatalysis, enzyme imme	obilizatio	on technique, bo	old glucose				
monitoring.									
Outcome - 5	Be able to unders	stand the importance of biosensolds.	ors in th	e medicaland	K2				

Suggested Readings:

D.G. Buerk, (1995) "Biosensor: Theory and Apllication", Publisher-CRC press.

- M. Alexander, B.R. Bloom, D.A. Hopwood, R. Hull, etc., (2000) "Encyclopedia of Microbiology", Vol-IV, Publisher-Academic Press.
- Blum, "Biosensor Principles and Applications", Vol-15, CRC Press, (1991).
- J. Vetelino, and A.Reghu, (2010) "Introduction to Sensors", Publisher-CRC Press.
- A. Mulchandani and K. Rogers, (2010) "Enzyme and Microbial Biosensors: Techniques and Protocols", Publisher-Humana Press.
- S. Higson, (2012) "Biosensors for Medical Applications", Publisher-Elsevier.
- J. Li, N. Wu, (2013) "Biosensors Based on Nanomaterials and Nanodevices", Publisher-CRC press.
- 1. Bock Gu, H-S. Kim, (2014) "Biosensors Based on Aptamers and Enzymes", Springer.

Online Resources:

- 1. https://www.electronicshub.org/types-of-biosensors/
- 2. https://www.intechopen.com/chapters/58836

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
			Cou	rse designed by: D	r. P. Boomi

Course Outcome VS Programme Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	L(1)	L(1)	L(1)	M(2)	M(2)	M(2)	M(2)	L(1)	L(1)
CO2	L(1)	- 2	L(1)	M(2)	M(2)	L(1)	M(2)	L(1)	M(2)	M(2)
CO3	L(1)	L(1)	L(1)	L(1)	L(1)	× -	L(1)	L(1)	L(1)	L(1)
CO4	-	L(1)	L(1)	L(1)	9 -C	M(2)	L(1)	M(2)	L(1)	L(1)
CO5	M(2)	L(1)	L(1)	L(1)	L(1)	-])	L(1)	M(2)	L(1)	L(1)
W.AV	1.2	0.8	1	1.4	1.4	1	1.4	1.6	1.2	1.2

S – Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	-	M(2)	M(2)
CO2	L(1)	-	M(2)	M(2)	L(1)
CO3	L(1)	-	M(2)	L(1)	M(2)
CO4	M(2)	L(1)	-	L(1)	L(1)
CO5	M(2)	L(1)	S(3)	M(2)	L(1)
W.	1.6	0.8	1.4	1.6	1.4
AV					

S -- Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar - Sensor, Biosensor and Nanomaterials based Biosensor

- 1. Define sensor and uses.
- 2. Highlight the principle and application of biosensor.
- 3. Illustrate with example of optical and chemical sensor.
- 4. Differentiate between chemical and biological sensor.
- 5. Define Avidin-Biotin mediated biosensor by electrochemical technique?
- 6. Write an essay on luminescent and glucose biosensors.
- 7. Explain the detail about how to immobilization of enzyme through the Avidin-Biotin modified system.
- 8. Describe the carbon nanotube based biosensor.
- 9. Differentiate between nanodevice and nanocrystalline biosensor.
- 10. Write a short note on biological oxygen demand biosensor.

Program: M.Sc.,	Semester: (2022 Onwards)					
Course Title and Code: Molecular Interactions	Class Time: As per Time Table					
Subject Code: 502505						
Name of the Course Teacher	Dr. RM. Vidhyavathi					
Mobile: -	Email: -					

Molecular Interactions

Course Brief:

Molecular interactions deal with nucleic acids and proteins and how these molecules interact with one another in a cellular environment to promote and regulate the normal physiological processes defining proper growth, division, and development. This course will emphasize on the basics of orbital atom theory, molecular mechanisms of DNA replication, repair, transcription, protein synthesis, and gene regulation followed in different organisms. Techniques and experiments used to discern these mechanisms, often referring to the original scientific literature. An in-depth look at some rapidly evolving molecular processes, including chromatin structure and function, RNA polymerase dynamics, and regulation of gene expression by different types of RNAs.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- □ Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- □ Video-conferencing for lectures that will be sought from experts belonging to overseas reputed institutions
- □ Case-studies and Review questions
- □ Practical Classes.

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance has been taken will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate

interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar
As per acade	mic calendar	After CI	A Test-I

Course Outline: Molecular Interactions

- □ The course will help to analyze data to identify how molecular interactions affect structural and functional mechanism in detail.
- □ It enumerates the explanations based on evidence of how variation in molecular UNITs provides cells with a wider range of functions.
- □ On completion of the course the student will be able to describe the relationship between enzyme structure and function and to predict the effect of various environmental conditions/changes to the function of enzymes.
- Determine the biologically important factors affecting enzyme activity.

□ The course content includes Fundamentals of atomic and molecular orbitals; Fundamentals of chemical bonding and non-bonding interactions; Folding pathways; Molecular interactions (protein-protein, protein-DNA, DNA-Drug, Protein-Lipid, Protein-Ligand, Protein-Carbohydrate interaction, Metalloprotein. Pi ... Pi interactions, C-H...Pi interactions) and Spectroscopy.

More books for Reading and Referencing

Physical Chemistry: Quantum Chemistry and Molecular Interactions by Andrew Cooksy; 2013

ISBN-10: 0321814169, ISBN-13: 978-0321814166.

Molecular Interactions in Bioseparations; Editors: That T. Ngo; 1993 ISBN: 978-1-4899-1872-7

Physical Chemistry, Mastering Chemistry Access Code: Quantum Chemistry and Molecular

Interactions by Andrew Cooksy; 2013 ISBN 10: 0321784405 ISBN 13: 9780321784407

Electron Dynamics in Molecular Interactions; Principles and Applications; By (author): Frank

Hagelberg (East Tennessee State University, USA); 2014 ISBN: 978-1-84816-487-1

Chromatographic Determination of Molecular Interactions Applications in Biochemistry, chemistry and Bio-Physics By Tibor Cserhati, Klara Valko; 2010 **ISBN-13: 978-0849344374**, **ISBN-10: 0849344379**

		Major Elective							
DSE	Course Code: 502505	Molecular Interactions	Т	Credits:-5	Hours: -5				
	Unit - I								
Objective -	- 1 To explain how molecular patter and its associat	v ionic, hydrophobic, and hydrog ern of Biological processes - com red action.	en bond prehend	ing interactions I the underlying	influence the mechanisms				
Fundame	ntals of atomic and	I molecular orbitals: Theory of a	atomic a	nd molecular or	oitals; Linear				
combination	on of atomic orbita	ls; Quantitative treatment of vale	ency bon	d theory and me	olecular orbital				
theory;Res	sonance structures.								
Outcome -	1 How changes in the polypept	n a DNA nucleotide sequence ca de produced.	an result	in a change	K1				
		Unit – II							
Objective -	-2 To determine t	he structure of nucleic acids and	l protein	s and modulate	accordingly				
	the binding spe	cificity between them.							
Fundame	ntals of chemical b	oonding and non-bonding intera	actions:	Electrovalent bo	ond, stability of				
electroval	ent bond. Covalent	bond – partial ionic character of	covaler	nt bonds. Shape	of orbitals and				
hybridizat	ion. Coordination b	onds, Metallic bond. Molecular g	geometry	y-VSEPR Theor	y, hydrophobic				
interaction	is, electrostatic inter	ractions, van der Waals interaction	ns, hydro	ogen bonds.					
Outcome -	2 Connection be	tween the sequence and the subc	compone	ents of a	K2				
	biological poly	mer and its properties.	61						
Objective -	the binding spe	ecificity between them.	i protein	s and modulate	accordingly				
Protein F disulphide Factors de	Folding and stabil bridge. Principles etermining protein s	ity: Factors determining protein of protein folding, mechanism : tability	folds- for prote	Helices, strands ein folding, role	s, turns, loops, of chaperons,				
Outcome -	3 Predict and just	tify that changes in the subcomp	onents	of abiological	K1				
	polymer affect	the functionality of the molecule.		-					
		Unit – IV		I					
Objective -	Objective - 4 To distinguish different molecular biology techniques that are used to isolate, separate, and probe for specific proteins, nucleic acids, and intra molecular interactions.								
Molecular	r interactions: pro	tein-protein, protein-DNA, DNA	A-Drug,	Protein-Lipid, I	Protein-Ligand,				
Protein- C	arbohydrate interac	tion, metal coordination in meta	alloprote	eins, Inter and i	ntra molecular				
interaction	ns								
Outcome -	4 Evaluate scient	tific questions of the concerning	organisr	ns that exhibit	K4				
	complex prope	rties due to the interaction of thei	r constit	uent parts.					
		Unit-V							
Objective -	- 5 To identify and them for a giv experimental t biological prob	d overcome limitations of the abo en particular biological question. echniques that are best suited lem.	ove men Addition to answ	tioned technique onally, also to u ver and address	es and employ se appropriate s for a given				
Experime	ental and Computa	tional methods: Principles, Theo	ory, Insti	rumentation and	Application				
OT ITC, SF	'K,Fluorescence tec	nniques to bimolecular interactio	ns. Data	abases and tools	пке DIP,				
INTACT	etc.,								

Outcome - 5	Define representation	ns and models	that illustrate the	interactions	K2		
	between biochemistry, parts and reactions.						
Suggested R	eadings:						
Frenking,	G. and Shaik. S. (2014). The Chemica	al Bond: Fundame	ental Aspects of C	hemical		
Bondi	ng, WileyPublishers.						
Gromiha, I	M.M. (2010). Protein	Bioinformatics:	From Sequence t	o Function, Acad	emic Press,		
First I	Edition.Winter, M.J. (2	2016). Chemica	l Bonding. Oxfor	d University Pres	s, Inc., New		
York.							
Meyerkord Huma	l, C.L. and ui , H. (20 na Press, second edit	15). Protein-Pr	otein Interactions	: Methods and Ag	oplications,		
Kanguean	e, P. (2011). Protein-P	rotein Interactio	ons. Nova science	Publishers.			
Mathura, V	.S. and Kangueane, I	P. (2009). Bioin	formatics: A Con	cept-Based Introc	luction.		
Spring	ger Bujnicki, J.M. (20	09). Prediction	of Protein Structur	res, Functions, an	d		
Intera	ctions. John Wiley &	Sons Ltd.					
Albert cott	on, F. (2008). Chemie	cal Application	of Group Theory	. John Wiley and	Sons, Inc. New		
York.	Thirdedition.			·			
Eliel, E. (2	001). Stereochemistry	of carbon com	pounds, Tata Mc-	Graw-Hill.			
Spice, J. E	. (1964). Chemical B	inding and Stru	cture. Pergamon	Press Ltd., Headi	ngton Hill Hall,		
Oxfor	d. 395pp.						
Online Re	sources:						
1. https://w	ww.toppr.com/guides	chemistry/che	mical-bonding-an	d-molecular-struc	ture/molecular-		
orbital-the	ory/	- UED 66	D _D				
2. https://w	ww.cryst.bbk.ac.uk/P	PS2/course/sec	tion7/os non.htm	1			
K1-Remembe	er K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create		
	and the second s	ulagarra (mi	Course des	igned by: Dr. R	M. Vidhyavathi		

Course Outcome VS Programme Outcomes	
--------------------------------------	--

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L(1)	L(1)	L(1)	L(1)	A.	M(2)	M(2)	L(1)	M(2)	L(1)
CO2	-	L(1)	L(1)	M(2)	L(1)	M(2)	L(1)	M(2)	L(1)	L(1)
CO3	L(1)	L(1)		L(1)		L(1)	1	L(1)	L(1)	L(1)
CO4	L(1)	-	L(1)	1	L(1)	L(1)	-	L(1)	L(1)	L(1)
CO5	-	L(1)	L(1)	L(1)	-	-	L(1)	L(1)	L(1)	L(1)
W.A V	0.6	0.8	0.8	1	0.2	1.2	0.8	1.2	1.2	1

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	L(1)	L(1)	L(1)	L(1)
CO2	-	-	L(1)	L(1)	L(1)
CO3	M(2)	-	M(2)	L(1)	-
CO4	M(2)	L(1)	L(1)	L(1)	L(1)
CO5	-	-	M(2)	M(2)	L(1)
W.AV	1.4	0.4	1.4	1.2	0.8

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar - Molecular Interactions

- □ Theory of atomic and molecular orbitals;
- □ Valency bond theory and molecular orbital theory;
- □ Shape of orbitals and hybridization.
- □ Instrumentation and Application of UV, IR, NMR and Circular dichroism (CD) to macro molecules.
- □ Stereochemistry of proteins and nucleic acids.
- □ Molecular interaction between Protein-Carbohydrate; Metalloprotein; Pi...Pi interactions, and C-H...Pi interactions.

Program: M.Sc.,	Semester: (2022 Onwards)
Course Title and Code: Introduction to	Class Time: As per Time Table
Neural Networks	
Subject Code: 502506	
Name of the Course Teacher	Dr. RM. Vidhyavathi
Mobile: +91 9444835869	E-mail: vidhyavathirm@alagappauniversity.ac.in

Introduction to Neural Networks

Course Brief:

The course introduces the theory and practice of neural computation. It offers the principles of neurocomputing with artificial neural networks widely used for addressing realworld problems such as classification, regression, pattern recognition, data mining, timeseries modelling, etc. Two main topics are covered: supervised and unsupervised learning. Supervised learning is studied with linear perception models, and non-linear models such as multilayer perceptrons and radial-basis function networks. Unsupervised learning is studied using Kohonen networks. Recurrent networks of the Hopfield type are briefly covered. There are offered contemporary training techniques for parameter learning in all these neural networks. Program implementations in Mat lab of the studied neural networks are provided. The objective

of this course is to make students learn about concepts of artificial intelligence and applications of artificial intelligence in bioinformatics.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- □ Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Case-studies and refer question bank

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides

the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of thetopics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule.

CIA Test I	CIA Test II	Assignment Seminar					
As per Acade	emic Calendar	After CL	A Test-I				

Course Outline: Introduction to Neural Networks

- Introduction to neural networks.
- Basics of network training.
- Probability density estimation.
- Multi-layer perceptrons.
- Radial basis function networks (RBFNs).
- Committee Machines and Mixtures of Experts.
- Content includes: Support Vector Machines (SVMs), Neural Networks for Robot Control.

More books for Reading and Referencing

Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis and Applications Rajasekaran; 2017, ISBN: 978-812-035-334-3

Neural Networks & Learning Machines Pearson Education India; Third edition Haykin; 2009; ISBN -10: 0-13-147-139-2 and ISBN-13: 978-0-13-147139-9

Artificial Intelligence 3e: A Modern Approach

Russell; 2015, ISBN-10: 933-254-351-8 and ISBN-13: 978-933-254-351-5

Machine Learning

Tom M. Mitchell; 1997 ISBN: 0071154671 and ISBN: 978-007-115-467-3

	T	N	Iajor Elective			
DSE	Course Code: 502506	Introduction	to Neural Network	as T	Credits:5	Hours:5
	.1		Unit-I			
Objectiv	el To introduc	e the neural	networks for	classif	ication an	dregression.
Introdu	ction to Neural N	etworks: History	, Biological Neuro	ns and N	leural Netwo	rks. Artificia
Intellige	ence (AI) - Artificia	al Neurons, Netw	orks of Artificial N	leurons,	Single Layer	Perceptrons
Artificia	al Neural Networks	(ANN)			c	*
Outcom	e 1 Understand	the main	fundamental pr	inciples	and	K2
	techniques of	neural network s	ystems.			
			Unit-II			
Objective	2 To give design	n methodologies t	for artificial neural r	etworks.		
Learnii	ng and Generaliza	ation in Single	Layer Perception	s: Hebb	ian Learning	. Gradient
Descent	Learning, The Ge	eneralized Delta	Rule. Practical Con	nsideratio	ons. Learning	in Multi-
Layer F	erceptrons. Back-P	ropagation, Lear	ning with Moment	um. Con	jugate Gradie	ent
Learnin	g.	-	-		-	
Outcom	e 2 Recall and De	esign the single a	nd multi-layer feed-	forwardn	neural	K1
	networks.	0 0	-			
		d Llot	Unit-III			
Objective	3 To provide kn	owledge for netw	ork tuning and over	fitting a	voidance.	
Bias an	d Variance: Under-	Fitting and Over-	Fitting, Improving	Generaliz	zation.	
Outcom	e 3 Understand b	uilding blocks of	Neural Networks.	÷.		K2
	<u> </u>		Unit-IV			
Objectiv	re 4 To offer neura	al netwo <mark>rk</mark> implen	nentations in Mat la	b.		
Applica	tions of Multi-Lay	er Pe <mark>rc</mark> eptrons:	Radial Basis Funct	ion Netw	orks: Introdu	ction,
Radial H	Basis Function Netw	orks: <mark>A</mark> lgorithms	and Applications, (Committe	e Machines.	
Outcom	e 4 Understand tl	ne differences be	tween networks for	supervise	ed and	K2
	unsupervised	learning.				
	ł	VA VC	Unit-V			
Objective	5 To demonstra	te neural network	applications on re	al-worldt	tasks.	
Self Or	ganizing Maps: Fu	ndamentals, Self	Organizing Maps:	Algorithr	ns and Appli	cations,
Learnin	g Vector Quantisation	on, Overview of N	More Advanced Top	oics.		
Outcom	e 5 Investigate th	e principal neura	l network models an	ndapplica	ations.	K5
Suggest	ed Readings:	. 1		T 1 1	1	
Daniel	Graupe (2013). Prii	Co Pto I td	al Neural Networks	, I hird e	dition, World	
S Gareth	James Daniela Wit	CO. I IC. LIU. iten Trevor Hasti	e Robert Tibshirani	(2013)	"Introduction	toStatistica
L	earning", Springer.			, (2013),	muouuvuon	io Statiotica
Ian Go	odfellow, Yoshua E	Bengio, Aaron Co	urville ,(2016),"Dee	p Learni	ng", MIT Pre	ss . Raúl
R	ojas, (2013)," Neur	al Networks: A S	ystematic Introducti	on", Spri	inger Science	&
D	usiness Media.			x 1 '	т [.] уу с	
B		// . / /	D ··· · ·	lloching	Learning", S	springer.
B Christo	opher M. Bishop, I	(2013)," Pattern	Recognition and I	(2012) "	Artificial No.	ral Nata
B Christo D	opher M. Bishop, w avid W. Pearson, N adGenetic Algorithm	(2013)," Pattern Nigel C. Steele, R ms" Springer Sci	Recognition and Rudolf F. Albrecht,	(2012) "J edia	Artificial Net	iral Nets
B Christo D an Richar	opher M. Bishop, David W. Pearson, N ndGenetic Algorithr d O. Duda, Peter F	(2013)," Pattern Nigel C. Steele, R ns", Springer Sci E. Hart, David G	Recognition and I Rudolf F. Albrecht, ence & Business Me . Stork .(2012)." P	(2012) "L edia attern Cl	Artificial Neu assification".	Iral Nets John

Online Resources: 1.https://www.analyticsvidhya.com/blog/2022/01/introduction-to-neural-networks/ 2. https://www.geeksforgeeks.org/self-organising-maps-kohonen-maps/ Interview K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
			Course desi	igned by: Dr.RM	1.Vidhyavathi

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	-	-	-	L(1)	L(1)	L(1)	L(1)	L(1)
CO2	S(3)	M(2)	-	-	-	L(1)	L(1)	L(1)	L(1)	L(1)
CO3	S(3)	S(3)	-	-	-	L(1)	L(1)	L(1)	L(1)	L(1)
CO4	S(3)	S(3)	M(2)	-	L(1)	M(2)	L(1)	M(2)	L(1)	M(2)
CO5	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	M(2)	M(2)	S(3)	S(3)
W.AV	3	2.6	0.8	0.4	0.4	1.4	1.2	1.4	1.4	1.6

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	-0	-	-2	M(2)
CO2	S(3)	17/3			M(2)
CO3	S(3)	-	M(2)	L(1)	S(3)
CO4	S(3)	M(2)	M(2)	M(2)	S(3)
W. AV	3	2	3	2	3
a a	(0)		11 (0		(4)

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar - Introduction to Neural Networks

- Describe the relation between real brains and simple artificial neural network models.
- Explain and contrast the most common architectures and learning algorithms for Multilayer Perceptrons, Radial-Basis Function Networks, Committee Machines, and Kohonen Self-Organizing Maps.
- Discuss the main factors involved in achieving good learning and generalization performance in neural network systems.
- Describe the equations using vector expressions.

• Identify the main implementation issues for common neural network systems. Evaluate the practical considerations in applying neural networks to real classification and regression problems.

Program: M.Sc.,	Semester: (2022 Onwards)			
Course Title and Code: Data	Class Time: As per Time Table			
Warehousing and Data Mining				
Subject Code: 502507				
Name of the Course Teacher	Dr. RM. Vidhyavathi			
Mobile: +91 9444835869	E-mail: vidhyavathirm@alagappauniversity.ac.in			

Data Warehousing and Data Mining

Course Brief:

Data mining, *the extraction of hidden predictive information from large databases*, is a powerful new technology with great potential to help companies focus on the most important information in their data warehouses. Data mining tools predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. The automated, prospective analyses offered by data mining move beyond the analyses of past events provided by retrospective tools typical of decision support systems. Data mining tools can answer business questions that traditionally too time consuming to resolve. They scour databases for hidden patterns, finding predictive information that experts may miss because it lies outside their expectations. Thus, Introduction to Database Management Systems will concentrate on the principles, design, implementation and applications of database management systems.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Lectures covering the Practical part using PowerPoint presentations.
- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Case-studies and Discuss model question bank.

Attendance: Attendance and participation are vital to the student's success in this course. Students are expected to attend class every day. Minimum attendance to be eligible to take end-semester-examination is 80%. It is also essential that the students study regularly.

Punctuality: Punctuality is very important in the course, because if student are late, you not only waste your time, but other student's. You will also disturb others when you go into the lecture class or laboratory after the class begins. Therefore, please arrive at the class on time. Names of late students will be recorded by mentor and marks from Course performance will be deducted. An excuse for being absent from class shall be a medical or personal emergency acceptable at the discretion of the Head of the Dept.

Class Participation: Class participation and interaction helps to form a complete educational experience. However, class participation and interaction is to be relevant to course content and context. Deviant behavior may lead to dismissal or suspension.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and

fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge)

and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar
As per Acad	emic Calendar	After Cl	A Test-I

Course Outline: Data Warehousing and Data Mining

- Databases to enable decision support through warehousing and mining of data.
- Areas with data mining will include justifying the need for knowledge recovery in databases, data mining methods such as clustering, classification, Bayesian networks, association rules, and visualization.
- Data warehouse including efficient data retrieval using bitmap and join indexes, reporting, ad hoc querying, and multi-dimensional operations such as slicing, dicing, pivoting, drill-down, and roll-up operation.
- Data extraction, transformation, loading techniques for data warehousing.
- Machine learning schemes in data mining.
- Database Concepts and Architecture.
- Data Modeling using Entity Relationship Diagrams.
- Referential integrity, entity integrity, and other constraints. Defining a relational schema from an ER diagram.
- Machine learning schemes in data mining.

More books for Reading and Referencing

ata Warehousing and Mining - 2012

ITLESL, Pearson Education India (ISBN : 8131799050, 9788131799055)

Data Mining Data Warehousing and Olap - 2009

Gajendra Sharma, S. K. Kataria & Sons (ISBN: 8189757474, 9788189757472)

Data Warehousing Olap and Data Mining -2006

S. Nagabhushana, New Age International (ISBN: 8122417647, 9788122417647)

Data Warehousing: Architecture and Implementation – 1999

Mark Humphries, Michael W. Hawkins, Michelle C. Dy, Prentice Hall Professional and **(ISBN:0130809020, 9780130809025)**

Major Elective									
DSE	C	CourseCode:Data Warehousing and DataTCredits:5502507MiningT							
Unit-I									
Objective -1 To introduce students to the basic concepts and techniques of Datamining and Data Warehousing.									
Overview	v ai	nd Concepts:]	Need for data	warehousing, Basic	elemer	nts of data wa	rehousing,		
Planning	and	Requirements	: Project plann	ing and managemen	t, Coll	ecting the req	uirements.		
Architect	ure	And Infrastruct	ture: Architectu	ral components, Infr	astruct	ure and metad	ata.		
Outcome	-1	Understand co warehousing a	oncepts of Data and design scher	warehousing, components.	nents c	ofdata	K2		
				Unit-II					
Objective	-2	To develop sl problems	kills of using re	ecent data mining so	ftware	for solvingpra	actical		
Data Des	sign	And Data R	epresentation:	Principles of dimen	nsional	modeling, D	imensional		
modeling	adv	vanced topics, d	ata extraction, 1	transformation and lo	ading,	data quality. In	nformation		
Access ar	nd I	Delivery: Match	ing information	to classes of users,	OLAP	in data wareh	ouse, Data		
warehous	ing	and the web.	Implementatio	on and Maintenance:	Phys	ical design pro	ocess, data		
warehous	e de	ployment, grow	wth and mainten	ance.					
Outcome	-2	Understand the clustering met	e concepts of O hods and apply	LAP and OLAP tools algorithms to datasets	s. To u s.	inderstand the	K2		
			S ALAGAPPI	Unit-III					
Objective -	-3	To gain experi	ience of doing in	ndependent study and	resear	ch.			
Introduc	tion	Basics of data	n mining, related	l concepts, Data minin	ng tech	niques. Data N	lining		
Algorithm	ns: (Classification, (Cluste <mark>ring, Ass</mark>	o <mark>ciation</mark> rules. Know	ledge	Discovery: KI	DD Process.		
Web Min	ing:	Web Content M	Ainin <mark>g</mark> , Web Str	ructure Mining, Web	Usage	mining.			
Outcome	-3	Recall the cor apply the algor	ncepts of minin rithms to datase	g methods and classi st <mark>s.</mark>	ificatio	ntypes and	K1		
				Unit-IV					
Objective-4	4	To study the and data minin	methodology ong to derive bus	f engineering legacy iness rules for decision	databa on supp	ases for data v port systems.	varehousing		
Advance	d T	opics: Spatial	mining, tempor	ral mining. Visualiza	tion :	Data generali	zation and		
summariz	zatic	n-based chara	cterization, A	nalytical characteriz	zation:	analysis of	attribute		
relevance	, N	lining class c	comparisons: I	Discriminating betwe	en di	fferent classe	s, Mining		
descriptiv	ve s	tatistical measu	ures in large d	latabases Data Minii	ng Prin	mitives, Lang	lages, and		
System A	rch	itectures: Data	mining primitiv	ves, Query language,	Desig	ning GUI base	ed on a		
data minin	ng c	uery language.			2	-			
Outcome	-4	Build competi	tive advantage	through proactive ana	lysis,		K3		
		predictive 1	modelling, a	nd identifying no	ew ti	rends and			
		behaviour's.							

	Unit-V									
Objective -5	Objective -5 Develop and apply enthusiasm for learning. Class participation is encouraged in this course.									
DBMS: Introduction, overview and types. Relational and transactional Database. Relational										
database-Introduction to relational DB, Data Definition-Manipulation-control- Objects, Views,										
sequences an	d Synonyms. Data Abstraction; Data Models; Instances & Schemes; E-R Model -									
Entity and en	tity sets; Relations and relationship sets; E-R diagrams; Reducing E-R Diagrams to									
tables. Netw	ork Data Model: Basic concepts; Hierarchical Data Model: Basic Concepts;									
Multimedia	Databases - Basic Concepts and Applications; Indexing and Hashing; Text									
Databases; I	ntroduction to Distributed Database Processing, Data Security. ORACLE and									
SQL- introdu	ction and functions in DBMS; SYBASE									
Outcome 5	5 Differentiate database system from file system by enumerating the features provide by database system and describe each in both function and benefit.									
Suggested Re	adings:									
Kimball, R.	(2013), "The Data Warehouse Toolkit", John Wiley.									
Kamber, H.,	Kaufmann, M. (2011), "Data Mining Concepts and Techniques".									
Ian H. Witte Kaufman Michael W. Wiley &	en, Eibe Frank, Mark A. Hall, Christopher J. Pal, (2016),"Data Mining", Morgan n, Fourth Edition. Berry and Jacob Kogan, (2010),") Text Mining Applications and Theory", John Sons									
Feldman, R analyzing	and Sanger, J. (2007) "The Text Mining Handbook: Advanced approaches in gunstructured data"; Cambridge University Press.									
Xiaohua Hu Sons.	and Yi Pan (2007), Knowledge Discovery in Bioinformatics, John Wiley &									
William H. Edition.	Inmon, (2005),"Building the Data Warehouse", John Wiley & Sons, Fourth									
Dunham, M	I.H. (2006) "Data Mining Introductory and Advanced Topics", PearsonEducation.									
Mallach, (20 Education	002)." Decision Support And Data Warehouse Systems", Tata McGraw-Hill									
Online Re	esources:									
1. https://v	www.montecarlodata.com/blog-data-warehousing-guide/									
2. https://v	www.tutorialspoint.com/dwh/dwh_olap.htm									
лі-кететре	r A2-Understand A3-Apply A4-Analyze A5-Evaluate A6-Create									
	Course designed by: Dr.RM.Vidhyavathi									

Course Outcome VS Programme Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	S(3)	-	M(2)	M(2)	M(2)	M(2)	S(3)
CO2	M(2)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)
CO3	M(2)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)
CO4	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	S(3)	S(3)	M(2)
W.Av	2.6	3	2.8	3	1.6	M(2)	2.4	2.6	2.6	2.6
g										

S –Strong (3), M-Medium (2), L- Low (1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	S(3)	M(2)
CO2	M(2)	M(2)	M(2)	S(3)	M(2)
CO3	S(3)	S(3)	M(2)	M(2)	S(3)
CO4	M(2)	M(2)	L(1)	M(2)	L(1)
CO5	S(3)	S(3)	S(3)	L(1)	M(2)
W.Avg	2.6	2.6	2	2.2	2

Course Outcome VS Programme Specific Outcomes

S – Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar - Data Warehousing and Data Mining

- Introduction to the process of knowledge discovery in databases.
- The role of OLAP server.
- Basic concepts of data warehousing and data mining.
- Data warehouse design and implementation: multidimensional data model, casestudy using Oracle technology.
- Data mining core algorithms: statistical modeling, classification, clustering, association rules.
- Patterns of data mart development.
- Providing OLAP (On-line Analytical Processing) to User-Analysts.
- Designing GUI based on a data mining query language.
- Descriptive statistical measures in large databases Data Mining Primitives, Languages, and System Architectures.
- Database Support to Data Mining.
- Association rules and Knowledge Discovery process.
- Data Warehousing Technology.
- Prism Solutions.
- Analytical characterization.
- Discuss about Introduction to Distributed Database Processing.
- Model development, schema design for a data warehouse.
- Explain DBMS functions.
- Purpose of building a DBMS system and RDBMS system.
- Compare between File systems and database systems.
- Explain the relational model with suitable example.
- Reducing E-R Diagrams to tables.
- Define the following terms.
 - a. Tuple
 - b. Attribute
 - c. Domain
 - d. Primary Key
 - e. Foreign Key

Program: M.Sc.,	Semester: III (2022 Onwards)
Course Title and Code: Programming in C	Class Time: As per Time Table
Subject Code: 502508	
Name of the Course Teacher	Dr. RM. Vidhyavathi
Mobile: +91 9444835869	E-mail: vidhyavathi@alagappauniversity.ac.in

Course Brief:

This course provides a fast-paced introduction to the C and C++ programming languages. To learn the required background knowledge, including memory management, pointers, preprocessor macros, object-oriented programming, and how to find bugs when inevitably use any of those incorrectly. In computing, C is a general- purpose computer programming language used along with the UNIX operating system. Although C was designed for implementing system software, it is also used for developing application software. It is widely used on different types of software platforms and computer architectures, and several popular compilers exist. C has greatly influenced many other popular programming languages.

C++ Language is one of the approaches to provide object-oriented functionality with C like syntax. C++ adds greater typing strength, scoping and other tools useful in objectoriented Programming and permits generic programming via templates. It is regarded as a middle-level language, as it comprises a combination of both high-level and low-level language features. Some of its application domains include systems software, device drivers, embedded software, high-performance server and client applications, and entertainment software such as video game. The practical part of this course is covered in the lab through exercises, practical assignments, and tutorials.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Lectures covering the theoretical part using PowerPoint presentations.
- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Case-studies and Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10 mins after the attendance will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class/Lab Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner

here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar		
As per Academic Calendar		After CIA Test I			

Course Outline: Programming in C and C++

Introduction to compiling and software development life cycle

- Basic scalar data types, operators, variables, statements, flow control, streamedinput/ output, conversions, preprocessor.
- Declaring, defining and invoking functions.
- Strings processing, exceptions handling, dealing with namespaces.
- Object-oriented approach.
- It discusses class and objects.
- Defining overloaded operators, File input and output functions.
- The above said methods are used to create a bioinformatics related programs in Cand C++.

More books for Reading and Referencing

C++ Programming Today – 2011

Johnston, Barabara : ISBN-10: 812-033-831-6, ISBN-13: 978-812-033-831-9

Practical C++ Programming – 2003

Steve Oualline, 'O'Reilly Media, Inc and (ISBN: 0596004192, 9780596004194)

Advanced Graphics Programming In C & C++ - 1993

Roger T. Stevens, BPB Publications and (ISBN: 817029228X, 9788170292289)

Computer Programming with C++ - 2017

Kunal Pimparkhede, Cambridge University Press,

(ISBN: 1316506800, 9781316506806)

		Major Elective			
DSE	Course Code:	Programming in C and	Т	Credits:5	Hours:5
	502508	Unit I			
	To learn the fund	omental programming concents	and	methodologi	20
Objective-1	which are essential	to building good C/C^{++} program	s allu	methodologi	-8
Basias of C.	Essentials of C Pro	aroms. Data Types and names	in C	Panding and	Writing to
Standard innu	L section L section L	Statements Expressions Operations	ni C,	Hierarchy of	operators
Control stater	ments including deci	sion loops and branching Loo	n cor	trol structures	operators,
Outcome 1	Easy to implement	test debug and document proc	p con	in C and C++	K)
Outcomen	Lasy to implement,	Unit-II	21 anns		N 2
Objective 2	To practice the fu	ndamental programming method	lolog	ies in the C/C	++
Objective-2	programming lang	lage via laboratory experiences	loiogi		
Arrays Fun	ctions and Pointer	\mathbf{s} : Array initialization 1D and	2D	Arrays Funct	ions in C
Passing eleme	ents to functions. Sco	bpe and Storage Classes in C. In	trodu	ction to Pointe	ers. Pointer
notations, Ap	plying Pointers, A	llocating Memory, More Data	ı Typ	bes, Storage	classes, C
preprocessor.			• •		
Outcome-2	Construct the prog	grams that demonstrate effective	e use	of C+features	5. K6
		Unit-III			I
Objective-3	To code, docume	nt, test, and implement a	well-s	tructured, rol	oust
	computer program	using the C programming langua	.ge.		
Structure & Collect Dissin module.	Unions: Collecting nilar Data, File inpu	Data Items of Different Types at and output operations. Standa	, Uni ırd fu	ons: Another nctions in the	Way to 'C' graphic
Outcome-3	Understand and us	e the common data structures t	ypica	lly found in C	++ K2
	programs - namely	arrays, strings, lists, trees, and h	ash ta	bles.	
		Unit-IV			
Objective-4	To code, docume	nt, te <mark>st, and implement a y</mark> using the C++ programming lang	vell-s	tructured, rol	oust
Introduction to	o C++- History- Feat	hures-Installation-C++ Program-	C++	cout cin endl	- Variable-
Data types-	Keywords- Operat	ors- Object oriented program	mino	concepts- i	nheritance
polymorphism	n and encapsulation	. C++ Control Statement: if-e	lse-sv	vitch- For Lo	op- While
Loop- Do-Wh	ile Loop- Break Stat	ement- Continue Statement- Got	o Sta	tement- Comm	ents.
Outcome-4	Create programs th	nat measure or simulate perform	ance	and use them	to K6
	analyse behaviour.	1			
		Unit-V			·
Objective-5	Be able to apply	object oriented or non-object ori	ented	l techniques to	solve bigge
C++ Function	computing problem	15 & reference, Recursion, Storac	re Cl	asses Arrays	Array to
Function-Mul	tidimensional Array	s-C++ Pointers-· Pointers-C++ (biect	t Class- OOPs	Concents-
Object Class	- Constructor- Des	structor- this Pointer- static-S	tructs	s- Enumeratio	on- Friend
Function- C+-	+ Namespaces- Tem	plates: Templates- C++ Strings:	String	s-Exceptions-	·Exception
Handling: trv/	catch- User-Defined	-Programs.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5° Encoptions	
Outcome-5	Apply Programmin	g constructs to develop simple	bioin	formatics	K5
L	Programs and tools.				

Suggested Readings:								
E. Balagurusamy (2017), "Programming in ANSI C", Tata McGraw-Hill Education,								
Seventh Edition.								
Herbert Scheldt (2009),"C++: The Complete Reference", Tata McGraw- Hill Education,								
Fourth Edition.								
Jesse Liberty, (1998),"Teach Yourself C++ in 21 Days", Sams Publishing 2nd edition.Marshall A.								
D, (1999), "Programming in C", Nikos Drakos.								
Brian W. Kernighan, Dennis Ritchie, (1988),"The C programming Language", PrenticeHall.								
Michael Barr, (1999)," Programming Embedded Systems in C and C++ ", O'Reilly. Guigo,								
R. & Gilbert D., (2002) "Algorithms in bioinformatics", Springer- Verlag, Berlin.Dan								
Gookin, (2004) "C for Dummies", John Wiley & Sons, 2nd edition.								
Parthasarathy, S. (2008), "Essentials of C Programming for Life Sciences", Ane's Books								
India, New Delhi. Y. Daniel Liang, (2011),"Introduction to Programming with C++",								
Pearson Education, Second Editio								
Online Decourses								
Unline Kesources:								
1. https://books.goalkicker.com/CBook/								
2. https://books.goalkicker.com/CPlusPlusBook/								
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create								
Course designed by: Dr.RM.Vidhyavathi								

Course Outcome VS Programme Outcomes

	1. No. 8112				40	100	107	1010
3) S(3)	M(2)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	S(2)
3) M(2)	L(1)	1	L(1)	L(1)	L(1)	-	M(2)	L(1)
3) S(3)	L(1)	L(1)	L(1)	M(2)	M(2)	M(2)	L(1)	L(1)
3) S(3)	L(1)	M(2)	L(1)	M(2)	M(2)	M(2)	L(1)	L(1)
3) S(3)	L(1)	M(2)	L(1)	M(2)	M(2)	M(2)	M(2)	L(1)
3 2.8	1.2	1.4	1.2	2	1.8	1.6	1.6	1.2
	3) M(2) 3) S(3) 3) S(3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	M(2)	M(2)	M(2)
CO2	M(2)	M(2)	M(2)	-	M(2)
CO3	M(2)	M(2)	L(1)	M(2)	L(1)
CO4	M(2)	L(1)	L(1)	L(1)	L(1)
CO5	M(2)	L(1)	L(1)	L(1)	-
W.Avg	2.2	1.6	1.4	1.2	1.2

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar - Programming in C and C++

- To describe the advantages of a high level language like C/C++, the programming process, and the compilation process.
- To describe and use software tools in the programming process.
- Use an IDE to compile, load, save, and debug a C/C++ program.
- Create and analyze algorithms for solving simple problems.
- Analyze, explain and trace the behavior of simple programs involving the fundamental programming constructs addressed in the course.
- Write programs that use each of the following fundamental programming constructs: basic computations, simple console I/O, standard conditional and iterative structures (including pretest and posttest loops, counter-controlled loops, and conditionals).
- To demonstrate an understanding of primitive data types, values, operators and expressions in C/C++.
- Describe automatic type conversion rules, related issues of magnitude and precision, type casting, and determine the value and type of an expression involving mixed types.
- Find mismatches between two sequences of same length, Pass the value to a function using pointer.
- Convert NCBI format file to fast a sequence file, Find GC content using Structures

Program: M.Sc.,	Semester: (2022 Onwards)
Course Title and Code: Cell	Class Time: As per Time Table
Communication and Cell Signaling	
Subject Code: 502509	
Name of the Course Teacher	Dr. M.Karthikeyan
Mobile: -	E-mail: mkbioinformatics@gmail.com-

Cell Communication and Cell Signaling

Course Brief:

Cell communication and cell biology course deals with the molecular biology of cell signaling. The students will gain an insight into the fundamental processes of the cell to cell communication and signaling uptake of molecules by membrane receptors, including membrane-protein and protein-protein interactions, and their associated effectors. Students will learn about Morphogenesis and organogenesis. The second half of lectures will deal with cell cycle signaling system and cell death.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Video-conferencing for lectures that will be sought from experts belonging to overseas reputed institutions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked

to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance has been taken will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	II CIA Test	Assignment	Seminar
As per Aca	ademic Calendar	After CI	A Test-I

Course Outline: Core: Cell Communication and Cell Signaling

Basic concepts about the Host parasitic interactions – understanding the entry processof different pathogens.

Exploring the virus-induced cell transformation and pathogen induced diseases in animals and plants. Cell-Cell fusion method in both normal and abnormal cells.

Cell signaling mechanism in cells, hormones and their receptors.

Signaling through G-protein coupled receptor.

Principles of cellular communication and regulation of hematopoiesis.

Cell adhesion and role of different adhesion molecules.

Genetic rearrangements in progenitor cells, oncogenes, tumor suppressor genes.

Programmed cell death, aging and senescence.

Morphogenesis and organogenesis in animals and plants.

More books for Reading and Referencing

Molecular Cell Biology (Fourth Edition) by Harvey Lodish, Arnold Berk, David

Baltimore; 1999, ISBN-13: 978-0716737063, ISBN-10: 071673706X

Handbook of Cell Signaling by Edward A. Dennis; 2009, ISBN: 9780123741455

Handbook of Cell Signaling (Second Edition) by Ralph A. Bradshaw and Edward A.

Dennis; 2015; ISBN: 978-0-8153- 4244

Cell Signaling: principles and mechanisms by Wendell Lim, Bruce Mayer, Tony Pawson

Cell Communication: Understanding how Information is Stored and Used in Cells

by Michael Friedman, Brett Friedman, 2005; ISBN 10: 1404203192,

ISBN 13: 9781404203198

Cell-to-Cell Communication by Walmor C. De Mello; 2012; ISBN 13:978-1-4612-9006-7

		Major Elective					
DSE	Course Code: 502509	Cell Communication and Cell Signaling	Т	Credits:5	Hours: 5		
		Unit - I					
Objective - 1	To study the ce	llular morphology, function and	to de	evelop an ur	iderstanding of		
	genome organizati	ion.	1: 00	1	1.1 1		
Host parasite	interaction: Reco	ognition and entry processes of c	liffere	ent pathogens	like bacteria,		
viruses into an cell transformation	ation, pathogen-ind	t cells, alteration of host cell beha uced diseases in animals and plant	vior l is, cel	by pathogens, l-cell fusion	in both normal		
and abnormal of	cells.						
Outcome - 1	Students will lear	n about Morphogenesis and organo	ogene	sis to describ	e K2		
	how cells explo signaling pathway	it signaling components to asso s.	emble	the specifi	c		
		Unit – II					
Objective - 2	To underpin the current understand techniques.	more advanced concept those are dings, new experimental methodolo	e cov ogies i	ered experim	ental basis of cell biology		
Cell signaling coupled recep pathways, bac and quorum se	: Hormones and t otors, signal trans- terial and plant two nsing.	heir receptors, cell surface recept duction pathways, second messe p-component systems, light signalin	tor, s engera Ig in J	ignaling thro s, regulation plants, bacter	ugh G-protein of signaling al chemo taxis		
Outcome - 2	Student will be a signaling pathwa metabolism.	ble to learn components and prop ays in control of gene expres	erties ssion	of major ce and cellula	K2		
		Unit – III					
Objective - 3	To provide the communication	student with a strong foun	dation	n for princ	iples of cell		
Cellular com	munication: Gene	ral principles of cell communicat	tion,	cell adhesior	and roles of		
different adhes	ion molecules, gap Regulation of hem	junctions, extracellular matrix, int	tegrin	s, neurotransi	nission and its		
Outcome - 3	Recognize and including the signa	discuss the main types of c al molecules.	ell d	communicatio	n, K1&K2		
		Unit – IV					
Objective - 4	To make the stude	ents to understand the genetic rearran	ngeme	ent			
Cellular and	genetic alteration	s: Genetic rearrangements in pro	ogenit	or cells, onc	ogenes, tumor		
suppressorgene	es, cancer and the c	ell cycle, virus-induced cancer, met	tastasi	is, interaction	of cancer cells		
with normal co	ells, apoptosis, ther	apeutic interventions of uncontrolle	ed cel	l growth. Pr 1	ned cell death,		
aging and senescence.							
Outcome - 4	To understand the	importance of genetic alteration			K5		
		Unit -V			1		
Objective - 5	To find out the me	thods for analyzing the cell morphe	ogene	sis and organ	ogenesis		
Morphogenes Dictyostelium; formation in d	is and organoge axes and pattern for <i>Caenorhabditis ela</i>	enesis in animals: Cell aggre ormation in <i>Drosophila</i> , amphibia a gans evelopes induction limb de	gation and ch	n and diffe	erentiation in enesis – vulva egeneration in		

vertebrates; c	lifferentiation of neurons, post embryonic development- larval formation,						
metamorphosis	; environmental regulation of normal development; sex determination. Morphogenesis						
and organogenesis in plants: Organization of shoot and root apical meristem; shoot and root							
development;	eaf development and phyllotaxy; transition to flowering, floral meristems and floral						
development ir	Arabidopsis and Antirrhinum.						
Outcome - 5	Analyze the general celluler morphogenesis and organogenesis foraminal K4						
	and plant.						
Suggested Rea	idings:						
Pfeffer U (20	13) Cancer Genomics; Springer.						
Scott F. Gilbe USA.	ert (2013) Developmental Biology; Tenth Edition; Sinauer Associates, Inc., Sunderland,						
Henry C. Pite Dekker,In	ot (2002) Fundamentals of Oncology; Fourth Edition, Revised and Expanded; Marcel c., New York, USA.						
Wolfgang Ar Textbook;	thur Schulz (2005) Molecular Biology of Human Cancers; An Advanced Student's Springer, USA.						
Raymond W. Press, Nev	Raymond W. Ruddon, Daniel D. Loeb (2007) Cancer Biology; Fourth Edition; OXFORD University Press, NewYork, USA.						
Bunz F (201	6) Principles of Cancer Genetics; Springer.						
Online R	esources:						
1. https://	elifesciences.org/articles/55793						
2. https://	academic.oup.com/jb/article/159/6/553/1750854						

K1-RememberK2-UnderstandK3-ApplyK4-AnalyzeK5-EvaluateK6-CreateCourse designed by: Dr. M. Karthikeyan

Course Outcome VS Programme Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	M(2)	M(2)	M(2)	L(1)	M(2)	M(2)	M(2)	M(2)	M(2)
CO2	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)	M(2)	L(1)	M(2)
CO3	M(2)	L(1)	L(1)	L(1)	M(2)	M(2)	L(1)	L(1)	M(2)	L(1)
CO4	L(1)	L(1)	M(2)	M(2)	L(1)	M(2)	L(1)	M(2)	L(1)	L(1)
CO5	M(2)	L(1)	M(2)	L(1)	L(1)	M(2)	M(2)	L(1)	M(2)	M(2)
W.AV	1.9	1.4	2	1.4	1.4	2	1.8	1.8	1.8	1.8

S-Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	1	M(2)	1	M(2)
CO2	1	M(2)	1	1	1
CO3	1	M(2)	1	M(2)	M(2)
CO4	M(2)	M(2)	M(2)	1	1
CO5	1	M(2)	M(2)	1	M(2)
W. AV	1.4	1.8	1.6	1.2	1.6

S – Strong (3), M-Medium (2),	L- Low	(1)
-------------------------------	--------	-----

Assignment & Seminar: Cell Communication and Cell Signaling

Describe signal transduction pathways.

- 1. Discuss about the cell signaling pathways.
- 2. What are bacterial chemotaxis and quorum sensing?
- 3. Describe virus-induced cell transformation
- 4. Write about G-protein coupled receptors
- 5. Explain the pathogen-induced diseases in animals and plants.
- 6. Define Regulation of hematopoiesis and its regulation.
- 7. Discuss about the neurotransmission.
- 8. Give an account on cell adhesion and roles of different adhesion molecules.
- 9. Define bacterial and plant two-component systems?

Big	data	analysis	and Nex	xt Generati	ion Sec	uencing
		•/				

Program: M.Sc., Bioinformatics	Semester : (2022 Onwards)
Course Title: Big data analysis and	Class Time: As per Time Table
Next Generation Sequencing	
Subject Code: 502510	
Name of Course Teacher	Dr. Sanjeev Kumar Singh
	Dr. M. Karthikeyan
Mobile: +91 - 98944 29800 &	E-mail : sksingh@alagappauniversity.ac.in
+91 - 94869 81874	karthikeyanm@alagappauniversity.ac.in

Course Brief:

The course portrays the crucial ideas of Essential Packages and libraries, operators, Data structures, control loops of R-language; file operations, graphic libraries 182and plots; Overview of Statistical packages and bioconductor libraries, Data representation in R; concepts and Principles of Genomics/Epigenomics, methods of Sequencing: Sanger's dideoxy method, Microarray and RNA-seq, Next Generation Sequencing technology; Impact of transcriptomics on biology; Data analysis: NGS, Big Data, microarray; Mapping algorithms. Measuring gene, lncRNA, siRNA from RNA-seq, NGS data; Sequence assembly concepts, challenges and Algorithms for assembling short reads using graph theory, Gene prediction, annotation and gene ontology (GO); Identification genetic variants from genome sequence: SNPs, SNVs, translocation, copy number variation; Gene expression analysis, Differential expression analysis, Hidden Markov model annotating histone markers, Cloud computing.

Teaching Methods: The mode of teaching is based on the following learning activities:

- Lectures covering the theoretical part will be delivered using PowerPointpresentations.
- A set of laboratory exercises to analyze biological problems using softwares andtools to develop student's interests in scientific discovery.
- Case studies in informatics-based research.

Attendance: The students are expected to attend the classes regularly, since regular attendance is essential to gain academic achievement. As per the University norms, the students having a minimum scale of 70-75% attendance are only qualified to write their end-semester examinations.

Punctuality: Punctuality is the most important quality for the student to be followed and maintained to achieve success. Students who arrive late by 10 mins to the class without any vital reason will be marked absent in the attendance register. On the other hand, valid excuse including personal or medical emergency is acceptable, with prior consent by the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking practice and much more that will provide a wholesome enriched classroom experience. When students participate, they learn from one another and gain their knowledge better.

Submission of Assignment: Assignments are given to students in order to apply the concepts for deeper understanding of the subject. Therefore, each student will be allocated two assignments for the course, covering the entire topic. Students will be given deadline to submit the assignment by the course instructor and good preparation of assignment will help the students for their final exams.

Presentation of Seminar: Apart from the assignments, students are supposed to give an oral presentation during the class seminar hours in their assigned topic. The concerned instructor will encourage the participants to ask valid questions during seminar presentation in order to put up their confidence levels and communication skills. In addition, students will be able to gain information and can be updated in their course.

Preparedness: At the end of every class, the concerned instructor conveys the students about the details that will be handled in the next class to increase the student's awareness related to the topics.

Academic Dishonesty: Academic dishonesty is a completely unacceptable mode of conduct and every student should be aware of this important aspect. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Depending upon the requirement of student's possibility, the course syllabus will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairperson.

Important dates: Scheduled dates for the various activities related to the course

CIA Test I	CIA Test II	Assignment I	Assignment II	Seminar
As per Academic Calendar		UN LIGUEROD	After CIA tests	

Course Outline: Core: Big Data Analysis and Next Generation Sequencing Essentials of R-Package, libraries, operators, control loops in biological data, statistical packages and bioconductor libraries in R, Qualitative and quantitative data types; plotting of data.

- Concepts of genomics and epigenomics, methodology and principle of sequencing, Genome projects of model organisms, ChIP-chip ChIP-seq- techniques, Methylation of DNA and genetics; volume of data produced and important repositories.
- Analysis of data: gene expression analysis, statistical methods, Mapping algorithms such as Burro-Wheeler; Measuring gene, lncRNA, siRNA from RNA- seq NGS data; Gene prediction and annotation; gene ontology (GO); Genome-wide annotation methods; Algorithms for assembling short reads using graph theory such as Hamiltonian cycle and de Brjin;
- Genetic variants identification from genome sequence; preface to various applications. Concepts and algorithms to measure transcriptional regulation, small RNA analysis, validation of whole-genome database.
- Finding of differential Gene and Allele-specific expression, Organizing genetic, Nonsynonyms (SIFT, Polyphen), Regulatory and Synonyms variants, , Hidden Markov model annotating histone markers,

More books for Reading and Referencing

The R Book-Michael J Crawley

Publisher: John Wiley & Sons, January 1, 2007. (ISBN: 978-0-470-97392-9)

Data Analysis and Graphics: Using R - J. H. Maindonald and John Braun

Publisher: Cambridge University Press, 06-May-2010. (ISBN: 978-0-521-76293-9)

Epigenetics: Current Research and Emerging Trends - **Brian P. Chadwick** Publisher Caister Academic Press, July 2015. (**ISBN: 978-1-910190-07-4**)

Non-coding RNAs and Epigenetic Regulation of Gene Expression: Drivers of Natural Selection - Kevin V. Morris

Publisher: Caister Academic Press, February 2012. (ISBN: 978-1-904455-94-3)

Computational Methods for Next Generation Sequencing Data Analysis- Ion

Mandoiu, Alexander Zelikovsky

Publisher: John Wiley & Sons, October 2016. (ISBN: 978-1-118-16948-3)

Next-Generation Sequencing Data Analysis- Xinkun Wang

Publisher: CRC Press , February 24, 2016 (ISBN: 978-1-482-21788-9)

Major Elective						
DSE	Course Code:	Big Data Analysis and Next	T	Credits:	5 H	ours: 5
	502510	Generation Sequencing				
		Unit - I		1		
Objective - 1	To make students u	nderstand the use of R in Data represent	ation,	File Input/O	utput	
	operations; Big Dat	a Analysis and Next Generation Sequen	cing;			
R statistical	package: Essentials	of R-Package and libraries, mathematic	al ope	erations, strir	ng oper	ations,
Data structur	es: vectors, data fr	ames, lists, matrices, Control loops:	if, els	se, while fo	r loop	s. File
Input/Output	operations. R plot	s and the graphics library. Overview	w of	Statistical p	ackage	es and
bioconductor	libraries in R.					
Data represer	ntation: Qualitative an	nd quantitative data types, Tabulation an	nd visu	ual display of	f data, j	plotting
line plot, scat	ter plot, frequency hi	stograms, pie-chart, heat map and 3D pl	lots.			
Outcome - 1	The student should	d be able to understand basic use	of R	statistical	K	.1
	package in biologic	al data				
		Unit – II				
Objective -	To provide the stu	dent with a strong foundation for prin-	ciples,	methods ar	d con	cepts of
2	sequencing, Impact	of transcriptomics on biology	-			-
Concepts of	Genomics/Epigeno	mics: History of genomics; Genome	proje	cts of mode	el orga	nisms;
Principle of	Sanger's dideoxy	method, Microarray and RNA-seq,	Next	Generation	Sequ	encing
technology, I	Different platforms of	of NGS, Overview of metagenomics p	rincip	les, Methyla	tion of	f DNA
and genetics	; histone modification	ons, ChIP-chip ChIP-seq- techniques.	Impa	ct of transc	riptom	ics on
biology, volu	me of data produced	and important repositories.	1		1	
Outcome - 2	The student will h	ave the capacity to comprehend the id	eas of	f Genome	K	1
	projects of model o	rganisms, Next Generation Sequencing	techno	ology.		
	1 5	Unit – III		6,		
Objective 3	To create students	opport INITy to analyze the Big Data	NGS	Microarray	PNA	Sec. of
Objective - 5	gene lncRNA siRl	NA	nus	, wherearay	, גויה	-seq or
Transcriptor	ne NCS/Big Data	nalysis: Microarray data analysis: gen	e evor	ession analy	cia ata	tistical
methods: rela	tive merits of various	us platforms Mapping algorithms such	$\mathbf{c} \mathbf{c} \mathbf{x} \mathbf{p}$	urro Wheele	sis, sia r Mac	usucar
gene IncDN	Λ siPNA from P	NA sea NGS data Sequence assembly		cents and	hollon	isuring
gene, merri	A, SIGNA HOIII NI hort reads: Algorithm	s for assembling short reads using grain	nh the	ory such as	Hami	ltonian
assembling si	Driin: Writing oo	de for assembling reads. Gone pro	pii the	ory such as	totion	aono
optology (C	Di Conomo wido o	de foi assembling feads. Gene pre		hatwaan wan		, gene
ontology (GC	J); Genome-wide a	iniotation methods, identification of syn	neny	between var	ous ge	nomes
Quite emaile 19	78. The students will	he able to domanstrate Microsomer	data	analyzia	V	<u>```</u>
Outcome - 5	Conomo wido on	be able to demonstrate Microarray	uata	h atrus an	K	.3
	Genome-wide ann	dation methods; identification of sy	/nteny	between		
	various genomes ar					
		Unit – IV				
Objective - 4	To make the studen	ts look the Identification genetic varian	ts fron	n genome see	quence	;
	small RNA analysis	s, validation of whole-genome database.				
Variant Ana	alysis and comput	ational Epigenomics: Identification	geneti	c variants f	rom g	enome
sequence: SN	Ps, SNVs, translocat	tion, copy number variation. Concepts b	ehind	genome-wic	le asso	ciation
studies. Intro	duction to various	applications. Concepts and algorithm	ms to	measure t	ranscrij	ptional
regulation;me	ethylation and altern	native splicing; relative merits of va	rious	approaches;	small	RNA
analysis, vali	dation of whole-gend	ome database.				

Outcome - 4	The students will be able to analyze SNPs, SNVs, translocation, copy	K4				
	number variation, Concepts and algorithms to measure transcriptional					
	regulation					
	Unit -V					
Objective - 5	To find out the methods for analyzing the Gene expression, Differential expressi	ion,				
	Allele-specific expression and Statisitcal considerations.					
Data Analys	sis Interpretation: Gene expression analysis, Differential expression analysis	vsis, Allele-				
specific expr	ression, Prioritizing genetic variants, Non-synonyms variants (SIFT, Polyphen),	, Synonyms				
variants, Reg	gulatory variants, Statistical methods on rare variants, Statisitcal consideration	ons, Hidden				
Markov mod	del annotating histone markers, Cloud computing.					
Outcome - 5	The student should understand the Differential expression analysis of gene,	K2				
	the Statistical methods on rare variants					
Suggested R	keadings:					
Momiao	Xiong "Big Data in Omics and Imaging: Association Analysis" (2017), C	CRC Press,				
ISBN	N: 978-1-4987-2578-1					
Peter Da	algaard "Introductory Statistics with R" (2015) Second Edition, Springer Sci	ience &				
Busin	inessMedia. ISBN: 978-0-387-79053-4	070 1 4007				
Laurens F	Holmes "Applied Epidemiologic Principles and Concepts" (2017), CRC, ISBN: 9	9/8-1-498/-				
33/8 Insec	s-6 Greg J. Hunt, Juergen R. Gadau "Advances in Genomics and Epigenomic ets" 1st Ed. (2017) Frontiers	ics of Social				
Ka-Chun	Wong "Big Data Analytics Genomics" (2016) Springer ISBN: 978-3-319-4127	/9_5				
Ion Mand	doiu. Alexander Zelikovsky "Computational Methods for Next Generation Seg	mencing				
Data	Analysis" (2016) John Wiley & Sons.	1				
Shui Qin	ng Ye "Big Data Analysis for Bioinformatics and Biomedical Discoveries" (20	016), CRC,				
ISBN	N: 978-1-4987-2454-8					
Ion Man	ndoiu, Alexander Zelikovsky "Computational Methods for Next Generation	Sequencing				
Data	Analysis" (2016), John Wiley & Sons, ISBN: 9781119272175					
Hyunjour	ng Lee, Il Sohn "Fundamentals of Big Data Network Analysis for Research ar	nd Industry"				
(2010	.6), John Wiley & Sons, ISBN: 978-1-1190-1558-1	N. 079				
Andrew E. I	eschendorii "Computational and Statistical Epigenomics" (2015), Springer, ISBI	N: 9/8-				
	94-017-9929-					
Online R		(1 0/221				
1. https	s://books.google.co.in/books?id=8bMj8m4KDQC&printsec=frontcover&dq=inau	utnor:%22Jo				
hn+1	Maindonaid%22&hl=en&newbks=1&newbks_redir=0&source=gb_mobile_searc	ch&ovdme=				
1&sa=X&redir_esc=y						
2. https	s://www.google.co.in/books/edition/Epigenetics/Im_0oQEACAAJ?hl=en					
K1-Remembe	er K2-Understand K3-Apply K4-Analyze K5-Evaluate K6	5-Create				
	Course designed by: Dr. Sanjeev Kumar Singh & Dr. M. K	Karthikeyan				

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L(1)	L(1)	M(2)	L(1)	-	-	L(1)	L(1)	M(2)	L(1)
CO2	L(1)	L(1)	L(1)	L(1)	-	L(1)	L(1)	L(1)	L(1)	L(1)
CO3	L(1)	L(1)	L(1)	L(1)	-	-	L(1)	L(1)	L(1)	L(1)
CO4	M(2)	L(1)	M(2)	M(2)	L(1)	L(1)	L(1)	L(1)	L(1)	L(1)
C05	-	L(1)	-	L(1)	L(1)	-	L(1)	-	L(1)	L(1)
W.AV	1	1	1.2	1.2	0.2	0.2	1	0.6	1.2	1

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	M(2)	M(2)	M(2)
CO2	M(2)	M(2)	M(2)	L(1)	L(1)
CO3	L(1)	25	L(1)	L(1)	L(1)
CO4	L(1)	(TAP)	L(1)	L(1)	L(1)
CO5	L(1)	L(1)	L(1)	-	L(1)
W.AV	1.4	1.2	1.4	1	1.2

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar - Big Data Analysis and Next Generation Sequencing

- 1. Microarray data analysis.
- 2. Differential expressed gene finding.
- 3. Next Generation Sequencing technology.
- Line plot, scatter plot, frequency histograms, pie-chart, heat map and 3D plots using R.
- 5. NGS data analysis.
- 6. Genome-wide annotation methods.
- 7. Identification SNPs.
- 8. Hidden Markov model.
- 9. Use bioconductor for analysis of microarray data using R.

Program: M. Sc	Semester : (2022 Onwards)
Course Title: General Microbiology	Class Time: As per Time Table
Subject Code: 502511	
Name of Course Teacher	Dr.J.Joseph Sahayarayan
Mobile: -	E-mail :jjsrbioinformatics2016@gmail.com-

General Microbiology

Course Brief:

This course explain the contributions of various scientist to the field of Microbiology, different system classification, basic structure and morphology of bacteria, reserve food materials, functions of different cell organelles, morphology of cyanobacteria and archaebacteria, classification of algae and fungi and their lifecycle, properties of viruses, various assay and life cycle of bacteriophages and virus related agents, Principle

and applications of bright and dark field microscope, electron microscope, polarized and confocal microscope.

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70- 75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Components of Internal Assessment (Max. Marks 25)

CIA Test I	CIA Test II	Assignment	Seminar
As per Acad	emic Calendar	After CI	A Test-I

Course Outline: General Microbiology (502511)

- 1. History of Microbiology
- 2. Various classification accepted
- 3. Internal and external structure of bacteria
- 4. Characteristics and life cycle of algae
- 5. Characteristics and life cycle of fungi
- 6. Characteristics, structural organization and life cycle of viruses
- 7. Principle and applications of different types of Microscope

Major Elective									
DSE	CourseCode: 502511	General Microbiology	T	Credits:5	H	lours: 5			
		Unit – I							
Objective -1	To describe the h	istory and scope of microbic	ology a	nd explain thec	lassificat	ion of			
	microorganisms.								
Overview of I	Overview of History of Microbiology: History and Scope of Microbiology – Generation theory								
– Contributio	n of Leuwenhoel	k, Louis Pasteur, Robert	Koch,	Edward Jenne	er, Josep	h Lister,			
Winogradsky,	Waksman and Je	ohn Tyndall. Classification	of m	icroorganisms	- Haeck	el's three			
kingdom conc	ept, Whittaker's fr	ve kingdom concept, Carl W	oes th	ree domain syst	em, Bact	erial			
classification a	ccording to Berge	y's manual of systemic Bacto	$\frac{\text{eriolog}}{1 \cdot 1}$	<u>y.</u>	.1 T				
Outcome -1	Explain the his	explain the history and scope of microbiology, including the K2							
	contributions of k	key scientists and classificati	on sys	tems.					
Obiostino 2	To find out the r	Unit – II nothods for analyzing the m	amahai	la arr a all atmast	and and a	ubaallular			
Objective -2	structures of best	aria	lorpho	logy, cell struct	lure ands	ubcenular			
Mornhology	structures of bact	erra.	unog (Call wall of Cre	mnagat	ivo Grom			
nositive bacte	ria and halophile	structures: Morphological t	ypes, (neule	composition a	nd funct	tion Cell			
membranes in	Fubacteria archa	ebacteria and cyanobacteria	Cell	membrane fund	tions Pe	rinlasmic			
space Structu	re and function of	f flagella cilia and nili ga	s vesic	les chlorosom	es carbo	xysomes			
magnetosomes	and phycobil	isomes Reserve food	materi	als – polyh	vdroxv	butvrate.			
polyphosphate	s. cvanophycin and	d Sulphur inclusions. Genera	al acco	unt onmvcoplas	sma.	o atyrate,			
Outcome -2	Understand the	morphology and sub-cellu	lar str	uctures of varie	ous K	2			
	microorganisms,	including bacteria, algae, fur	ngi, an	d protozoa.					
		Unit – III	0	6	I				
Objective -3	To explain the ge	eneral characteristics, classif	ficatior	n, structure, and	lreproduc	tion of			
Desis someon		misushess. Concel shows	,1. otonisti	og Classificati	on Ctur	atrue and			
Reproduction	of Algae: Chlorop	hyta (Green algae) Diatom	s Rho	dophyta (Red a	laae) Ei	ingi Cell			
wall – chemic	al composition and	d functions membranes and	their f	functions nutrit	ional stra	ategies of			
fungi. Structu	re and life cvc	le of fungi Ascomycetes	(Aspe	ergillus). Zvgo	mvcetes	(Mucor).			
Basidiomycete	es (Agaricus) and F	Protozoa.		8	5	(
Outcome -3	Analyze the	general characteristics, cl	assific	ation, structur	e, and	K4			
	reproduction of e	ukaryotic microbes, such as	algae a	and fungi.	,				
		Unit – IV	1						
Objective -4	To describe the	distinctive properties, mor	pholog	y, classification	n, cultiva	tion, and			
	purification of vir	ruses. To understand bacterie	ophage	s and viral-rela	ted agent	s.			
Basic concept	ts of virology: D	iscovery, distinctive proper	ties, n	norphology and	ultra-str	ucture of			
Virus, Classif	fication, Cultivation	on and Purification assay	of v	virus. Bacterio	phages-	structural			
organization a	nd life cycle - lytic	, lysogenic. Viral related age	ents - v	iroid and prion.					
Outcome -4	Know the basic c	concepts of virology, including	ng the	structure, classi	fication,	K3			
	and life cycles of	viruses andbacteriophages.							
		Unit -V							
Objective -5	To explain the p study microorgan	rinciples and applications on nisms.	f vario	us microscopic	techniqu	es used to			
Microscopic	Techniques: Prin	ciple and application of b	right f	field, dark fiel	d, phase	contrast,			
fluorescence, e	electron microscop	e- TEM and SEM, Polarized	l Micro	scope and Con	focal Mic	roscopy.			
Outcome -5	Application of v	arious microscopic techniqu	ies, su	ch as bright fie	ld, dark	K4			
	field, phase con microorganisms.	trast, fluorescence, and el	ectron	microscopy, t	o study				

Suggested Readings:

- Willey., J.M, Sherwood., L.M, & Woolverton., C.J. (2014).Prescott's Microbiology.McGraw Hill Education, Ninth Edition.
- Wessner., D,tioiKD ., C,searanC ., T,dnifnaN ., J. (2013). Microbiology. Wiley, First edition. Willey., J.M, Sherwood., L.M, & Woolverton., C.J. (2011).Prescott's Microbiology.McGraw HillEducation, Eighth Edition.
- Prescott, L.M., Harley, J.P. and Helin, D.A. (2008). "Microbiology";, McGraw Hill, New York, 5th Edition.
- Tortora G.J., Funke, B.R. and Case, C.L (2016). Microbiology-An introduction, Pearson Education India, 11th Edition.
- Tyagi., R. (2015). Advanced Applied Microbiology. D.P.S. Publishing House Sharma., P.D. (2014). Microbiology. Rastogi Publications.
- Dubey, R.C. and Maheswari, D.K. (2013). A text book of Microbiology; S. Chand and Company Ltd, NewDelhi, 3rd Edition.
- Kreig, N.R. Whitman, W. et al, (2012) "Bergeys Manual of Systematic Bacteriology"; Springer, Volume 5.
- Khuntia., B. K. (2011). Basic Microbiology-An Illustrated Laboratory Manual. DayaPublishing House.
- Alcamo, I.E. (2010). "Fundamentals of Microbiology"; Addison wesley Longman, Inc.California, 9th Edition.
- Pelczar, M.J., Chan, E.C.S and Kreig, N.R. (2009). Microbiology An application based approach, Tata McGraw Hill Publishing Company Limited, New Delhi, 5th Edition.

Madigan, M.T., Martinko, J. M., Dunlap, P.V. and Clark, D.P. (2009). Brock Biology of Microorganisms, Prentice Hall, New Jerry, 12th Edition.

- Geeta Sumbali and Merhrotra R.S. (2009).Principles of Microbiology. Tata McGraw Hill Education Private Limited.
- Glazer., A.N, Nikaido., H. (2008). Microbial biotechnology Fundamentals of Applied Microbiology, Cambridge University Press, Second edition.
- Wheelis, M. (2008). Principles of Modern Microbiology, Jones & Bartlett India Pvt. Ltd., New Delhi.
- Alexopoulus, E.J., Mims, C.W. and Blackwell, M. (2007). Introductory Mycology; John Wiley and Sons, New York, 4th Edition.
- Salle, A.J. (2007). Fundamental Principles of Bacteriology, Tata McGraw Hill Publishing Company, New Delhi, 7th Edition.
- Clarke, A.R. and Eberhardt, C.N. (2002). Microscopy Techniques For Microscopy, CRC press. Davis, B.D., Duelcco, R., Fisen, H.N. and Ginsberg, H.S. (1990). Microbiology; Harper & Row Publishers, Singapore, 4th Edition.

Atlas, R.M., (1987). "Microbiology Fundamentals and Applications"; MacMillan Pub. Co., New York.

- Stainer., R.Y., Ingraham, J.L., Wheelis, M.L. and Painter, P.H. (1987). The Microbial World; MacMillan Press Ltd., London, 5th Edition.
- Chapman, V.J. and Chapman, D.J. (1980). Sea Weeds; Chapman & Hall, London, 3rd Edition.

Online Resources:

- 1. https://www.google.com/search?q=MicrobiologyAn+introduction
- 2. https://www.google.com/search?q=general+microbiology

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create			
		Course designed by:Dr. J. Joseph Sahayarayan						

	-								-	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	S(3)	L(1)	L(1)	S(3)	M(2)	S(3)	S(3)	S(3)
CO2	S(3)	M(2)	S(3)	L(1)	L(1)	S(3)	M(2)	S(3)	S(3)	S(3)
CO3	S(3)	M(2)	S(3)	L(1)	L(1)	S(3)	M(2)	S(3)	S(3)	S(3)
CO4	S(3)	M(2)	S(3)	L(1)	L(1)	S(3)	M(2)	S(3)	S(3)	S(3)
CO5	S(3)	M(2)	S(3)	L(1)	L(1)	S(3)	M(2)	S(3)	S(3)	S(3)
W.AV	3	2	3	1	1	3	2	3	3	3

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	M(2)	L(1)	S(3)	S(3)
CO2	L(1)	M(2)	L(1)	S(3)	S(3)
CO3	L(1)	M(2)	L(1)	S(3)	S(3)
CO4	L(1)	M(2)	L(1)	S(3)	S(3)
CO5	L(1)	M(2)	L(1)	S(3)	S(3)
W.AV	21	2	1	3	3

S –Strong (3), M-Medium (2), L- Low (1) Assignment I Morphology of Bacterial cell

- 1. Explain the internal structure.
- 2. Explain the external structure.
- 3. Draw the neat diagram of typical bacterial cell.
- 4. Differentiate the cell wall nature of gram positive and gram negative bacteria.
- 5. Differentiate archaebacteria and Eubacteria.

Assignment II Life cycle of viruses

- 1. Define viruses.
- 2. Differentiate viruses from bacteria.
- 3. Account on viral assay methods.
- 4. Explain the lytic life cycle.
- 5. Explain the lysogenic life cycle.

Program: M.Sc., Bioinformatics	Semester : (2022 Onwards)
Course Title: Open Source in	Class Time: As per Time Table
Bioinformatics	
Subject Code: 502512	
Name of Course Teacher	Dr. Sanjeev Kumar Singh, Dr. M. Karthikeyan & Dr. J.
	Joseph Sahayarayan
Mobile: +91 - 9653003854	E-mail:sksingh@alagappauniversity.ac.in
+91 - 94869 81874	karthikeyanm@alagappauniversity.ac.in
+91 - 90475 64087	josephj@alagappauniversity.ac.in

Course Brief:

The course will explore students about the Bioinformatics tools and data resources that are available for the understanding and development of biomacromolecular structures, focusing on how best to use structural information to expand the most from it in definite research backgrounds. More and more genomes are being sequenced and many new types of datasets are being generated in large-scale projects. This course will cover the use of publicly available resources to manage, share, analyze and interpret data and also deals with software programs that are intended for mining out the meaningful information from the mass of molecular biology or biological databases in order to carry out sequence or structural analysis. The impact of genetic variation on structure, predicting protein structure and function and exploring interactions with other macromolecules as well as with low molecular weight compounds were easily carried out by learning the applications of various tools and softwares. The course depicts the usage of Bioinformatics resources that are easily accessible and also allows students to discover interaction networks and pathways in which specific gene(s) participate. Students will gain hands-on experience using a range of data resources and tools, combined with lectures. Furthermore, there will be the prospect to discuss the challenges facing towards research works in the bioinformatics field.

Teaching Methods: The mode of teaching of delivering the courses are as follows through these below mentioned methodologies:

- Delivering the lectures in the form of presentation using advanced technologies devices such as smart board.
- Video-conferencing for lectures that will be sought from experts belonging to overseas reputed institutions.
- Case-studies and Review questions

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students who arrive late by 10mins after the attendance will be marked absent unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge)

and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Scheduled dates for the various activities related to the course

CIA Test I	CIA Test II	Assignment	Seminar		
As per Acad	emic Calendar	After CI	A Test-I		

Course Outline: Elective: Open source in Bioinformatics

- Web based servers and softwares for genome analysis: Entrez- GenBank- GenScan-Vienna RNA Package-Biological network analysis.
- Access to protein sequence and functional information- Includes data from Swiss-Prot and TrEMBL-Database providing extensive structural and functional information for proteins-SOPMA-Predictprotein.
- Tools and resources for drug discovery: ChEMBL- drug-gene interactions, drugprotein interactions-docking-Structural visualization-RasMol- cluster genes with similar microarray expression profiles-Neural network.
- Process of primer design -standard PCR, bisulphite PCR, real-time PCR (QPCR) and sequencing. Multiple sequence alignment-TCoffee-PHYLIP-evolutionary analysis-Sequence manipulation.

- ACD Chemsketch-Drawing package-draw chemical structures including organics, organometallics, polymers, and Markush structures. Calculation of molecular properties, 2D and 3D structure cleaning and viewing-prediction of *logP*.
- Cytoscape open source software platform for visualizing complex networks and integrating these with any type of attribute data.
- Introduction to the analysis of gene expression data obtained using microarray experiments-Basic principles.

More books for Reading and Referencing:

R Programming for Bioinformatics (Chapman & Hall/CRC Computer Science & Data Analysis) - Robert Gentleman; 2008 (ISBN: 978-14-200-6367-7)

Bioinformatics Research and Applications - Zhipengcai, Oliver Eulenstein, Daniel Janies and David Schwartz (ISBN: 978-36-423-8035-8)

Python Programming for Biology: Bioinformatics and Beyond - Tim J. Stevens and Wayne

Boucher;2015 (ISBN: 978-05-217-2009-0)

Practical Bioinformatics (Nucleic Acids and Molecular Biology) - Janusz M. Businicki; 2007(ISBN: 978-81-812-8522-5)

Bioinformatics Algorithms: An Active Learning Approach (Vol. 1) - Phillip Compeau and Pavel Pevzner; 2015(ISBN: 978-09-903-7460-2)

Bioinformatics Algorithms: An Active Learning Approach (Vol. 2) - Phillip Compeau and Pavel Pevzner; 2014 (ISBN: 978-09-903-7462-6)

Major Elective										
DSE	Coursecode: 502512	Open source inBioinformatics	Τ	Credit	::5	Hours: 5				
	Unit - I									
Objective -1	Objective -1 To analyze DNA and RNA sequences using tools like Entrez, GenBank, EMBOSS, Artemis, Sequencher and Vienna RNA Package.									
DNA and RN	NA sequence ana	lysis: Entrez, GenBank, EMBOSS,	Artemis F	R11, Sequ	len	cher, DNA				
user, Jambw,	GENSCAN, Glin	nmer, MUMmer, AUGUSTUS, RN	A draw, I	RNA stru	ictu	re, Vienna				
RNA Package	, RNA Family, CI	C RNA Workbench.								
Outcome -1	Gain proficiency in using open-source tools for DNA and RNA K2 sequence analysis.									
		Unit – II								
Objective -2	To analyze prote CLC Protein Wo	ein sequences using tools like ExPA orkbench.	ASy, PSAA	AM, Prec	lict	Protein and				
Protein seque	ence analysis: Ex	PASy Proteomics tools, AnthePro, P	SAAM, O	sprey, C	LC	Protein				
Workbench,	WinPep, SubMit	o, ProteinVis, PIVOT, SOPMA,	SIPMA,	PSIPRE	D,	PSORTb,				
BiologicalNet	works, Predict Pro	otein, SCRATCH, and Introduction to	Bioubunt	tu						
Outcome -2	Develop skills bioinformatics to	in protein sequence analysis pols.	using	various]	K3				
		Unit – III		I.						
Objective -3	To briefly expl NetPrimer, BioE	ain sequence alignment and phylo Edit, PAUP, Phylip and MEGA.	genetic ar	nalysis u	sing	g tools like				
Molecular bi	ology, Sequence a	alignment and Phylogeny: NetPrim	er, PerlPri	mer, Sin	nVe	ctor,				
CGView, Bio MEGA, NJplo	Edit, BioCococa, ot, TCoffee, PHYN	Readseq, PAUP, Phylip, TreeViev //L.	v, Sequen	ce Manip	oula	tion Suite,				
Outcome -3	Understand	and apply molecular biolo	gy, seq	uence]	K3				
	alignment, and p	phylogenetic analysis tools.								
		Unit – IV								
Objective -4	To know mol AutoDock, RasN	ecular modeling and docking s hol, VMD, MODELLER and Groma	studies us cs.	sing too	ls	like Hex,				
Molecular me	odeling: Docking	study: Hex, Auto dock, Argus lab. I	RasMol, V	MD, Mo	lMo	ol, CN3D,				
DTMM, Swi	iss-PdbViewer, g	openmol, StrukEd, JMVC, Osca	ulX, ICM	1 Brows	ser,	Gromacs,				
BioInfo3D, M	ODELLER, Chim	nera.								
Outcome -4	Learn molecula	r modeling techniques and perform	m docking	g studies]	Χ4				
	using appropriat	e software.								
		Unit -V								
Objective -5	To perform che ScanAnalyze, C	mical drawing and microarray analyuster, Cytoscape, dchip, and Bioconc	ysis using luctor.	tools lik	e C	hemSketch,				
Chemical dra Cluster, Cytos Bioconductor.	awing and Micro scape, dchip, SAM	parray analysis: ChemSketch, Cher I, DAVID Bioinformatics EASE, TN	nDraw, B ⁄14, Pathw	KChem, ay Explo	Sca rer,	nAnalyze,				
Outcome -5	Gain skills in chemical drawing and microarray data analysis using K5 open-source tools.									

Suggested Readings:

Mandoiu, I., Zelikovsky, A. (2016). Computational Methods for Next Generation Sequencing Data Analysis. Wiley Publications.

Pazos, F., Monica, C. (2015). Practical Protein Bioinformatics. Springer.

Korpelainen, E., Tuimala, J., Somervuo, P., Huss, M., Wong, G. (2014). RNA-seq DataAnalysis: A Practical Approach, CRC press, Taylor and Francis group.

Edwards, D., Stajich J., Hansen, D. (2009). Bioinformatics: Tools and Applications, Springer Shui Qing Ye. (2008). Bioinformatics: A Practical Approach, Chapman & Hall/CRC.

Xiong, J. (2006). Essential Bioinformatics, Cambridge University Press.

Baxevanis, A. D., Francis Ouellette, B. F. (2005). Bioinformatics: A Practical Guide to the Analysis of Gene and Protein (3rd Ed). John Wiley & Sons.

Bujnicki, J. M. (2004). Practical Bioinformatics, Springer.

Wong, L. (2004). The Practical Bioinformatician, World Scientific Publishing Co. Pre. Ltd. Mount,
 D. W. (2004). Bioinformatics: Sequence and Genome Analysis, CBS publisher,
 Second Edition.

Online Resources:

- 1. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119272182
- 2. https://link.springer.com/book/10.1007/978-3-319-12727-9
- 3. https://link.springer.com/book/10.1007/978-0-387-92738-1

K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create

Course designed by: Dr. Sanjeev Kumar Singh, Dr. M. Karthikeyan & Dr. J. Joseph Sahayarayan

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	3	3	3	3	3	3	3	3	3	3

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	3	3	3	3	3

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar: Open source in Bioinformatics

- 1. DNA user.
- 2. RNA structure.
- 3. Biological Networks
- 4. Bio Edit.
- 5. Introduction to Bioubuntu.
- 6. Sequence Manipulation Suite.
- 7. Ras Mol.
- 8. ICM Browser.
- 9. Net Primer.
- 10. Swiss-Pdb Viewer.
- 11. BioInfo3D.
- 12. Chem Sketch.
- 13. Pathway Explorer.

Program: M.Sc	Semester : (2022 Onwards)
Course Title: Biodiversity, Agriculture,	Class Time: As per Time Table
Ecosystem, Environment and Medicine	
Subject Code: 502513	
Name of Course Teacher	Dr. J. Joseph Sahayarayan
Mobile: +91 9047564087	E-mail : josephj@alagappauniversity.ac.in

Biodiversity, Agriculture, Ecosystem, Environment and Medicine

Course Brief

This course introduces the evolution, biodiversity, and ecology of organisms. The origin and diversity of life, from prokaryotes, through simple eukaryotes to multicellular organisms are introduced. Natural selection, speciation, and phylogeny, stressing evolutionary relationships in conjunction with changing conditions on earth, are presented. The course introduces major concepts in ecology: the physical and chemical environment, population structure, life histories, species interactions, commUNITies, and ecosystems. The course also introduces motivations for food and agricultural policies and presents the policy tools that can be used to meet policy goals. We will also spend time reviewing the economic theory, and introducing some new tools, that are required to analyze the effects of policy interventions. The course provides details on specific polices, with emphasis on food and agricultural policies. In addition the course illustrates major ways in which the environment and human health. Also it portrays ways that scientific studies determine the quantitative relationship between environmental parameters and health. It depicts ways that the health impact from major environmental hazards can be effectively controlled.

Teaching methods

The teaching includes lectures, discussions, demonstrations, concept maps and models, self-study and question times and an integrating project work. The project work is indepth studies in groups with an emphasis on own work and literature studies. The course is completed with a written final examination.

Attendance: Having good attendance record marks the student's sincerity and has an overall positive impact on his/her personality trait development. The students are asked to attend the classes on a regular note and those having a minimum scale of 70-75% attendance are eligible to take up the end-semester examinations as per the University norms.

Punctuality: It is the most important attribute to be followed and maintained by the student throughout his/her life which for sure will lead to the path of success. Students

who arrive late by 10mins after the attendance has been taken will be marked absent

unless there is a valid reason (medical/ personal emergency) at the discretion of the Head of the Department.

Class Participation: A student's overall growth and personality development is based on his/her involvement in the class not just by mere presence but rather being interactive through questioning that will lead to propagation of ideas, initiation of thought-provoking process and much more that will provide a wholesome enriched classroom experience. Therefore, students are advised to be more attentive so that they learn from one another and develop quality-based knowledge.

Submission of Assignment: Assignments are given to students with just one motive to get more quantitative and qualitative knowledge insights into the assigned topic/chapter that will

lead to preparation and completion of the assignment in a constructive manner here just the knowledge provided is not merely counted but also completion prior to proposed deadline will also have a check on the student's serious consideration of the assignments.

Presentation of Seminar: Apart from the assignments the concerned instructors also allocate the students with a topic or based on their interests to present seminar that will aid them built their confidence levels, command over English language to communicate with precision and fluently. In addition, the fellow students are encouraged to pose questions that will instigate interest and provide update in that particular topic besides the information presented helping them to prepare for their examinations that can be taken as added advantage for the students.

Preparedness: At the end of every class, the concerned instructor tells the students what will be taken in the next class using these details the students should be aware of the topics that will be covered in the upcoming lectures which actually enhance the student's capability to grasp the knowledge and concepts provided much efficiently.

Academic Dishonesty: This is an important aspect that every student should be aware of. Thus, the respective faculty members educate the students of possible means of academic malpractices (plagiarism, violation of copyrights and stealing the patented knowledge) and the following consequences that will make them more vigilant in their academic career.

Subject to change clause: Based on the requirement of student's feasibility and meeting the competitive demands of the discipline the syllabus courses will be re-structured and updated accordingly at the discretion of the Professor(s) and Board of studies chairman.

Important dates: Please note down the important dates and stick to the schedule

CIA Test I	CIA Test II	Assignment	Seminar
As per Acad	emic Calen <mark>dar</mark>	After CI	A Test I

Course Outline: Elective: Biodiversity, Agriculture, Ecosystem, Environment and Medicine

- On completion of this course students will be able to acquire knowledge about
- Biodiversity status, scope, types, monitoring and documentation. Also major drivers of biodiversity change and biodiversity management approaches.
- Information about management and communication, libraries, bibliographies, periodicals, databases and distribution of biodiversity.
- Proportional genomes of plant and model plants, insect resistance, improve nutritional quality; grow drought resistant crops in poorer soils, biodiversity of Indian medicinal plants.
- Ecosystem structure, ecosystem function, energy flow and mineral cycling. Also they acquire knowledge about primary production and decomposition; structure and function of some Indian ecosystems: terrestrial and aquatic.
- Principles of conservation, major approaches to management, Indian case studies on conservation/management strategy.
- Biotechnological applications of microbes, antibiotic resistance, forensic analysis of microbes, the reality of bioweapon and Metagenomics.
- Fundamentals of gene therapy, Gene therapy present and future, clinical trials.
- Applications of Bioinformatics in cancer detection, Drug targets, Human genome diversity.

More books for Reading and Referencing

Occupational & Environmental Medicine: Fourth Edition (Lange Medical Books) 4th
Edition 2006 Joseph LaDou; ISBN-13: 978-0071443135
Environment and Ecology - (UPTU) 2011
Pandey S.N; ISBN-13: 978-9380618593
Ecology And Environment 2005
Sharma P.D; ISBN-13: 978-8171339051
Agriculture at a Glance: Enchanced Competition Explorer 2012
Sharma R.K; ISBN-13: 978-8170357643

		Major Elective			
DSE	Course Code: 502513	Biodiversity, Agriculture,Ecosystem, Environment and Medicine	Т	Credits:	5 Hours : 5
		Unit - I			
Objective -1	To describe t understand hov communicated	he current status, types, drivers and n w biodiversity information is managed an	manag Id	gement of b	biodiversity and
Biodiversity change; bio Biotechnolog Databases, I interest netwo	: Status, scope, diversity managy y information: M Distribution of orks, Biodiversity	types, monitoring and documentation; gement approaches. Uses of Biodiv Management and Communication, Librar biodiversity information, Meta datab Application Software – CD-ROMs and	majo ersity ies, Bi ases, Diske	r drivers o , Loss of ibliographic Virtual lib ttes.	of biodiversity f biodiversity, es, Periodicals, praries, Special
Outcome -1	Understand the about biodiver	ne status, scope, and types of biodive rsity management approaches.	ersity,	and learn	K2
		Unit – II			
Objective -2	To explain t improvement ecosystems.	he role of biodiversity in agricult and medicinal plants and understand	ure, the	including structure	crop and function of
Agriculture: nutritional q plants. Ecosy P); primary terrestrial (fo	Crops: Compar- uality, Grow dro vstem: Ecosystem production and rest, grassland) a	ative genomes of plant and model pla ought resistant crops in poorer soils, B a structure; ecosystem function; energy f decomposition; structure and function and aquatic (fresh water, marine, eustarin	ints, I iodive flow a of s ie).	nsect resist ersity of In and mineral some India	tance, improve adian medicinal cycling (C, N, n ecosystems:
Outcome -2	Gain knowled including crop	ge of the applications of biotechnology improvement and medicinal plantbiodive	in ag ersity.	riculture,	K2
		Unit – III		·	
Objective -3	To describe pr studies of cons	rinciples and approaches to conservation strategies.	biolo	ogy and dis	cuss Indian case
Ecosystem: primary prod (forest, grass conservation strategy (Proj	Ecosystem struc uction and decor land) and aquati major approacl ect Tiger, Biosph	ture; ecosystem function; energy flow mposition; structure and function of som c (fresh water, marine, eustarine). Conse nes to management, Indian case studie nere reserves).	and n ne Ind ervations on	nineral cyc ian ecosyst on Biology conservatic	ling (C, N,P); ems: terrestrial : Principles of on/management
Outcome -3	Learn about ec cycling and co	cosystem structure and function, energy finance in the second structure and function, energy finance in the second structure is the second structure in the second structure is the second structure i	low, n	nineral	K2
		Unit – IV			
Objective -4 To explain biotechnological applications of microbes in areas like waste cleanup, climate change and alternative energy and understand issues like antibiotic resistance and bioweapons.					
Environmen	t: Waste clean	up: Superbugs and their concept, M	licrob	es and Cl	imate change,
Alternative energy sources and Fuel cells. Biotechnological applications of microbes, Antibiotic resistance, Forensic analysis of microbes, the reality of bioweapon, Metagenomics.					
Outcome -4	Know the ro including was applications.	le of biotechnology in environmental te cleanup, alternative energy sources,	man and 1	agement, microbial	К3

Objective -5 To describe the fundamentals and applications of gene therapy and cell therapy and understand how bioinformatics is used in areas like cancer detection and drug target identification. Medicine: Cell Therapyand Gene therapy Fundamentals of gene therapy, Cell Therapy and Gene therapy present and future, clinical trials. Applications of Bioinformatics in cancer detection, Drug targets, Human genome diversity. Outcome -5 Describe about the cell therapy, gene therapy, and the applications of bioinformatics in medicine, including cancer detection and drug targets. K3 Suggested Readings: Tandon, P., Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Saha, T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P. Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .KI "miKC &nieK Wiano .tKeiriKSnkD .)2012(.M.t., akN kaCCnk/zaea .R.L. tigeD tNiDiik Harker, S. Pander, B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Sustainable Science: Springer Science & Business Media, Berlin. Sanyal, K., Kundu, M. and Rana, S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buchler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind, K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J		Unit -V
 b) jecuve -s therapy and understand how bioinformatics is used in areas like cancer detection and drug target identification. Medicine: Cell Therapyand Gene therapy Fundamentals of gene therapy, Cell Therapy and Gene therapy present and future, clinical trials. Applications of Bioinformatics in cancer detection. Drug targets, Human genome diversity. Dutcome -5 Describe about the cell therapy, gene therapy, and the applications of bioinformatics in medicine, including cancer detection and drug targets. Suggested Readings: Tandon, P., Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Singh, J.S., Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation. Anamaya Publishers, New Delhi. Saha, T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya, P. Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, «KI "miKC &nieK Wiano .tKeiriKSnkD .)2012(.M.t "aKN kaCCnkZaea .R.L. tigeD tNiDiik Harke, S., Pande, B.N. and Diwan, A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu, M. and Rana, S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind, K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity –	Objective 5	To describe the fundamentals and applications of gene therapy and cell
Image: Instruct Instruction Medicine: Cell Therapyand Gene therapy Fundamentals of gene therapy, Cell Therapy and Gene therapy present and future, clinical trials. Applications of Bioinformatics in cancer detection, Drug targets, Human genome diversity. Outcome -5 Describe about the cell therapy, gene therapy, and the applications of bioinformatics in medicine, including cancer detection and drug targets. K3 Suggested Readings: Tandon, P., Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Saha, T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P, Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .eKI ,miKC &nieK Wiano .tKeiriKSnKD .)2012(.M.t. aKN kaCCnKzaea .R.L. tigeD tNiDiiK Harke, S, Pande, B.N. and Diwan, A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana, S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind, K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Bioinformatics: An Introduction. Blackwell Science Ltd, Second edition	Objective -5	therapy and understand how bioinformatics is used in areas like cancer detection a
Medicine: Cell Therapyand Gene therapy Fundamentals of gene therapy, Cell Therapy and Gene therapy present and future, clinical trials. Applications of Bioinformatics in cancer detection, Drug targets, Human genome diversity. Dutcome -5 Describe about the cell therapy, gene therapy, and the applications of bioinformatics in medicine, including cancer detection and drug targets. Suggested Readings: Tandon, P., Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Singh, J.S., Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation. Anamaya Publishers, New Delhi. Saha., T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P, Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .cKI ,miKC & nick Wiano .tKeiriKSnKD .)2012(.M.t ,aKN kaCCnKzaea R.L. tigeD NiDitik Harke, S, Pande, B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulkar, K., (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buchler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Co		drug target identification.
 Gene therapy present and future, clinical trials. Applications of Bioinformatics in cancer detection, Drug targets, Human genome diversity. Dutcome -5 Describe about the cell therapy, gene therapy, and the applications of bioinformatics in medicine, including cancer detection and drug targets. Suggested Readings: Tandon, P., Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Singh, J.S., Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation. Anamaya Publishers, New Delhi. Saha., T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P., Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .cKI ,miKC &nieK Wiano .tKeiriKSnKD .)2012(.M.t., aKN kaCCnKzaea .R.L. tigeD tNiDiiK Harke, S, Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environ	Medicine: Ce	ll Therapyand Gene therapy Fundamentals of gene therapy, Cell Therapy and
Drug targets, Human genome diversity. Outcome -5 Describe about the cell therapy, gene therapy, and the applications of bioinformatics in medicine, including cancer detection and drug targets. K3 Suggested Readings: Tandon, P., Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Singh, J.S., Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation. Anamaya Publishers, New Delhi. Saha., T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P, Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .cKI ,miKC &nieK Wiano .tKeiriKSnKD .)2012(.M.t ,aKN kaCCnKzaea .R.L tigeD tNiDiiK Harke., S, Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana, S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition.	Gene therapy	present and future, clinical trials. Applications of Bioinformatics in cancer detection
 Dutcome -5 Describe about the cell therapy, gene therapy, and the applications of bioinformatics in medicine, including cancer detection and drug targets. Suggested Readings: Tandon, P., Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Singh, J.S., Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation. Anamaya Publishers, New Delhi. Saha., T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P, Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .cKI ,miKC &nieK Wiano .tKeiriKSnKD.)2012(.M.t, aKN kaCCnKzaea .R.L. tigeD tNiDiiK Harke., S, Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal, K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind, K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Drug targets, H	Iuman genome diversity.
 bioinformatics in medicine, including cancer detection and drug targets. Suggested Readings: Tandon, P., Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Singh, J.S., Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation. Anamaya Publishers, New Delhi. Saha., T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P., Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .cKI ,miKC &nieK Wiano .tKeiriKSnKD.)2012(.M.t ,aKN kaCCnKzaea .R.L tigeD tNiDiiK Harke., S. Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Outcome -5	Describe about the cell therapy, gene therapy, and the applications of
 Suggested Readings: Tandon, P., Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Singh, J.S., Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation. Anamaya Publishers, New Delhi. Saha., T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P. Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .cKI miKC &nieK Wiano .tKeiriKSnKD.)2012(.M.t ,aKN kaCCnKzaea .R.L .tigeD tNiDiiK Harke., S. Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 		bioinformatics in medicine, including cancer detection and drug K3
 Suggested Readings: Tandon, P., Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Singh, J.S., Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation. Anamaya Publishers, New Delhi. Saha., T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P, Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .cKI ,miKC &nieK Wiano. tKeiriKSnKD .)2012(.M.t ,aKN kaCCnKzaca .R.L .tigeD tNiDiiK Harke., S, Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buchler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 		targets.
 Tandon, P., Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I. K. International Publishing House Pvt. Ltd, New Delhi. Singh, J.S., Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation. Anamaya Publishers, New Delhi. Saha., T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P, Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .cKI ,miKC &nieK Wiano .tKeiriKSnkD .)2012(.M.t ,aKN kaCCnKzaea .R.L .tigeD INiDiiK Harke., S, Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buchler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Suggested Rea	adings:
 International Publishing House Pvt. Ltd, New Delni. Singh, J.S., Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation. Anamaya Publishers, New Delhi. Saha., T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P, Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .cKI ,miKC & mieK Wiano .tKeiriKSnkD .)2012(.M.t ,aKN kaCCnKzaea .R.L .tigeD tNiDiiK Harke., S, Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Tandon, P	Abrol, Y.P. and Kumaria, S. (2007). Biodiversity and its Significance. I.
 Singh, J.S., Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation. Anamaya Publishers, New Delhi. Saha., T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P, Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .cKI, miKC &nieK Wiano .tKeiriKSnKD.)2012(.M.t, aKN kaCCnKzaea .R.L. tigeD tNiDiiK Harke., S, Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Interna	ational Publishing House Pvt. Ltd, New Delhi.
 Saha., T.K. (2013). Ecology and Environmental Biology. Books & Allied (P) Ltd. Dahiya., P, Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg., cKI ,miKC &nieK Wiano .tKeiriKSnKD .)2012(.M.t ,aKN kaCCnKzaea .R.L .tigeD tNiDiiK Harke., S, Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Singh, J.S.	, Singh, S.P. and Gupta, S.R. (2006). Ecology, Environment and Resource Conservation
 Saha, T.K. (2015). Ecology and Environmental Stology. Books & Anteo (P) Ed. Dahiya, P, Ahlawat, M. (2013). Environmental Science: A New Approach. Alpha Science. Raven, P.H., Berg, .cKI ,miKC &nieK Wiano .tKeiriKSnKD.)2012(.M.t ,aKN kaCCnKzaea .R.L .tigeD tNiDiiK Harke., S, Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Anama Saha TV	(2012) Easlogy and Environmental Dislogy Deaks & Allied (D) I to
 Binlya, F. Anhawa, M. (2015). Environmental Science: A New Approach: Alpha Science. Ravel, P.H., Berg, .cKI ,miKC &nieK Wiano .tKeiriKSnKD .)2012(.M.t ,aKN kaCCnKzaea .R.L .tigeD tNiDiiK Harke., S. Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Dahiya D	(2013). Ecology and Environmental Biology. Books & Anned (F) Etd.
 Artin, Berg, tort, mile ethert whato incentrementation (2012) (1997) (Daniya., r,	Anawat, M. (2015). Environmental Science. A New Approach. Alpha Science. Rave
 Harke., S. Pande., B.N. and Diwan., A.D. (2010). Environmental Biotechnology and Sustainable Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	tigeD tNiDi	ik
 Biodiversity. Narendra Publishing House, First edition. Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Harke S	Pande BN and Diwan AD (2010) Environmental Biotechnology and Sustainal
 Fulekar, M. (2009). Bioinformatics: applications in life and environmental sciences. Springer Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Biodive	ersity. Narendra Publishing House. First edition.
 Science & Business Media, Berlin. Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Fulekar. M	(2009). Bioinformatics: applications in life and environmental sciences. Spring
 Sanyal., K., Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Science	e & Business Media, Berlin.
 (P) Ltd. Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. Kresina., T.F. (2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley & 	Sanyal., K.,	Kundu., M. and Rana., S. (2009). Ecology and Environment. Books & Allied
 Buehler, L.K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science and Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	(P) Ltd.	ALAGAPPA UNIVERSITY
 Medicine. CRC Press, Second Edition. Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. 	Buehler, L.	K., Rashidi, H.H. (2005). Bioinformatics Basics: Applications in Biological Science a
 Arvind., K. (2004). Environment and Health. APH Publishing Corporation. First Edition. Gaston., K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. Kresina., T.F. (2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley & 	Medici	ne. CRC Press, Second Edition.
 K.J. & Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Second edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. Kresina., T.F. (2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley & 	Arvind., K.	(2004). Environment and Health. APH Publishing Corporation. First Edition. Gasto
edition Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. Kresina., T.F. (2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley &	K.J. &	Spicer., J.I. (2004). Biodiversity: An Introduction. Blackwell Science Ltd, Seco
 Krishnamurthy, K.V. (2003). An advanced Textbook on Biodiversity – principle andpractice. Oxford & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. Kresina., T.F. (2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley & 	edition	
 & IBH publishing Co. Pvt. Ltd. First Edition. Evans., G.M & Furlong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. Kresina., T.F. (2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley & 	Krishnamur	thy, K.V. (2003). An advanced Textbook on Biodiversity – principle and practice. Oxfo
 Evans., G.M & Furiong., J.C. (2003). Environmental Biotechnology: Theory and Applications. John Wiley & Sons, Inc. Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. Kresina., T.F. (2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley & 	& IBH	publishing Co. Pvt. Ltd. First Edition.
 Yu., M.H. (2001). Environmental toxicology: impacts of environmental toxicants onliving systems. Lewis Publishers, London. Kresina., T.F. (2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley & 	Evans., G.N	& Furiong., J.C. (2003). Environmental Biotechnology: Theory and Applications. Jo
Lewis Publishers, London.Kresina., T.F. (2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley &	Vn MH	& Sons, mc.
Kresina., T.F. (2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley &		2001). Environmental toxicology. Impacts of environmental toxicants onlying system.
Kresina., T.F. (2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley &	Lewis	rubilsiters, Ebildon.
	Kresina., T.F.	(2001). An Introduction to Molecular Medicine and Gene Therapy. JohnWiley &
Sons, Inc.		Sons, Inc.
Online Resources:	Online	Resources:
1. https://www.google.com/search?g=Biodiversity	1. https://w	/ww.google.com/search?g=Biodiversity

2. https://byjus.com/biology/ecosystem/

2. https://byjus	s.com/biology/ecosyster	m/			
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
Course designed by:Dr. J. Joseph Sahayarayan					

CO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	3	3	3	2	2.2	3	2.2	3	3	3

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	M(2)	S(3)	S(3)
CO2	M(2)	M(2)	M(2)	S(3)	S(3)
CO3	M(2)	M(2)	M(2)	S(3)	S(3)
CO4	M(2)	M(2)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.A.V	2.2	2.2	2.4	3	3

S –Strong (3), M-Medium (2), L- Low (1)

Assignment & Seminar - Biodiversity, Agriculture, Ecosystem, Environment and Medicine

i. Explain biodiversity management approaches.

ii. Fundamentals of gene therapy – Explain.

iii. Applications of Bioinformatics in cancer detection – Discuss.

iv. Write a note on biodiversity application software.

v. Illustrate ecosystem structure, function, energy flow and mineral cycling.

vi. Give an account on comparative genomes of plant and model plants.

vii. Elaborate primary production and decomposition; structure and function of some Indian ecosystems.

ix. Discuss Superbugs and their concept.

x. Give detailed note biotechnological applications of microbes.

Program: M.Sc.,	Semester: (2022 Onwards)
Course Title: Nanotechnology and	Class Time: As per Time Table
Advanced drug delivery system	
Subject Code: 502514	
Name of the Course Teacher	Dr. P. Boomi
Mobile: +91 – 9486031423	Email: boomip@alagappauniversity.ac.in

Nanotechnology and Advanced drug delivery system

Course Brief:

Nanomedicine deals with the development and application of materials and devices to study biological processes and to treat disease at the level of single molecules and atoms. This exciting new field of nanotechnology and medicine is offering unique capabilities in disease diagnosis and management. This course also offers a survey of timely concepts in the rapidly emerging nanomedicine. The vision of combining diagnostics and therapeutics, now being referred to as theranostics is the area of recent research. Currently, the main use of nanoparticle medicinal products (NMP) is their conjugation or/and encapsulation with several active biomolecules for therapeutic or/and diagnostic purposes, since they can be used as drug carriers for chemotherapeutics to deliver medication directly to the tumor while sparing healthy tissue. This course will emphasize emerging nanotechnology based drug delivery systems, nano-based imaging and diagnostic systems, nanotoxicology and translating nanomedicines into clinical investigation.

Teaching Methods: The course will be based on the following teaching and learning activities:

- Lectures covering the theoretical part using PowerPoint presentations
- Case studies
- Review questions

Attendance: Regular attendance is necessary for gaining academic success; hence the students are expected to attend all the classes. As per University norms, the students are qualified to write their end-semester examinations only if they have a minimum attendance of 75% in all the courses.

Punctuality: Punctuality is an important quality for the students to achieve success. Students arriving late to the class by 10 minutes without any valid reason will be marked absent in the attendance record. Excuse will be provided for personal or medical emergency with prior approval by the Head of the Department

Class Participation: Classroom participation is important because learning is not just between the student and the teacher, but part of the whole classroom experience which involves questioning, inquiring and exchanging ideas. When students participate, they learn from each other and internalize the knowledge better.

Submission of Assignment: Assignments will help the students to apply the concepts which results in deeper understanding of the subject. Hence each student will be allocated two assignments for the course, covering the entire topic. Students will be provided deadline by the course instructor to submit the assignment. Proper preparation of assignment will help the students for final exams

Presentation of Seminar: Students are supposed to give an oral presentation during the class seminar hours in their assigned topic. Students will discuss on recent research finding related to the topic and participants are encouraged to ask valid questions. Seminars help the students to be updated in their course. In addition students will be able to learn their mistakes and can improve their communication skills during seminar presentation

Preparedness: Prior to attending the class the students are expected to collect information regarding the topic given in advance, so that they will be able to discuss during the lecture.

Academic Dishonesty: Since the students are not aware of academic integrity, students must be clearly explained about plagiarism and the consequences of violation of copyright laws, so that academic dishonesty may be avoided.

Subject to change clause: Depending upon the requirement of student, the course syllabus and course schedule are subjective to minor changes, which will be informed to students

Important dates: Scheduled dates for the various activities related to the course

CIA Test I	CIA Test II	Assignment	Seminar
As per Acad	emic Calendar	After CIA Test-I	
	2 LISU	00000	

Course Outline: Nanotechnology and Advanced drug delivery system

- 1. Properties and technological advantages of nanomaterials.
- 2. Top down and Bottom up approaches for the synthesis of nanomaterials.
- 3. Characterization of the synthesized nanomaterials by spectroscopic analysis and microscopic observations.
- 4. Types of nanocarriers used in drug delivery and its physicochemical properties.
- 5. Targeted and Non-targeted drug delivery using nanocarriers.
- 6. Various strategies of surface modification of Nanoparticles to enhance biocompatibility.
- 7. Role of Nanoparticles in diagnosis and imaging.
- 8. Fabrication of DNA and Protein based biosensor and its diagnostic application.
- 9. Theranostics nanomedicine for the treatment of cancer.
- 10. Nanotechnology application in the treatment of neurology, cardiology and opthamology.

More books for Reading and Referencing

Kewal K. Jain, "The Handbook of Nanomedicine", (2008), Publisher-Springer Science

& Business Media, ISBN: 1603273190, 9781603273190

V. P. Torchilin, "Nano Particulates As Drugcarriers", (2006), Publisher-Imperial

College Press, ISBN: 186094907X, 9781860949074

Ram B. Gupta and Uday B. Kompella "Nanoparticle Technology for Drug Delivery",

(2006), Publisher-CRC Press, ISBN: 0849374553, 9780849374555

R. Khare, "Nanomedicine and Future drugs", (2015), **ISBN:9384568643**, **9789384568641**

Mark Slevin, "Current Advances in the medical application of nanotechnology"(2012), Publisher- Bentham Science Publishers, **ISBN: 1608051315**, **9781608051311**

T. Pradeep, "A Textbook of Nanoscience and Nanotechnology", (2003), Publisher-

Tata McGraw-Hill Education, ISBN: 1259007324, 9781259007323

Mansoor M. Amiji, "Nanotechnology for cancer therapy", (2006), Pubisher-CRC

Press, ISBN: 1420006630, 9781420006636

Jeff W.M. Bulte and Michel M.J. Modo, "Nanoparticles in Biomedical Imaging Emerging Technologies and Applications", (2007), Publisher- Springer Science & Business Media, ISBN: 0387720278, 9780387720272

		Major Elective					
DSE	Course Code: 502514	Nanotechnology and dvanced drug delivery system	Т	Credits:5	Hours:5		
		Unit – I					
Objective -	1 Provide studer	ts broad overview of the application	ofnar	notechnology to	medicine		
Basic cond Nanomater Top down observation	cepts of Nano-scien ials - Quantum wire, and bottom up appro	ce and technology: Properties an Quantum well, Quantum dots and aches; Characterization - Spectrosco	d tech Carbor pic tec	nological adva 1 nanotubes: Sy hniques and M	ntages of nthesis – icroscopic		
Outcome - 1	Comprehend t	he principles behind nanomedicine.			K1		
		Unit – II					
Objective - 2	2 Impart kno drugdeliver	wledge on the role of biological y.	and	synthetic nano	carriers in		
Fundamen	tals and types of I	Nanocarriers: Types - Viral	naı	nocarrriers,	Polymeric		
nanocarrier	, lipid nanocarrier, c	arbon nanostructures, dendrimers,	silica	nanoparticles,	Microbes		
and antiboo	ly based	and the Star Starford Manuation	10.4				
nanocarrier	s; Physicochemical pi	operties - Size, Surface, Magnetic an		cal Properties.	IZ2		
Outcome - 2	nanomedicine	a understanding of concepts a	ind a	pplications of	K 2		
		Unit – III. A					
Objective - 3	3 Understand the clinical practic	ne regulatory and ethical aspects e	on us	se of nanotech	nology in		
Nanotechn	ology for Drug Targ	eting					
Drug target targeted de peglyation, destruction	ing – Targeted (Micr elivery, controlled du antibodies cell- surfa using nanoparticles,	oneedles, Micropumps, microvalves, ug release; Nanoparticle surface r ice targeting; nanostructures for use drug encapsulation strategies.	, Impla nodific e as ar	antable microch cation – bioco ntibiotics, disea	ips), non- njugation, sed tissue		
Outcome - 3	3 Impart the kn the diagnosis	owledge to apply these nano-drug and therapy	delive	ry systems for	K2&K3		
		Unit – IV					
Objective	e - 4 Convey know	edge about drug delivery systems.					
Nanotechn	ology for Imaging a	nd Detection					
Fluorophore facilitating and Protein BioMEMs:	es and Quantum de surgical approaches; n based biosensors - Use of nanoparticles	ots - Labeling and functionalization Nanoparticles for bioanalytical app materials for biosensor application for MRI, X Ray, Ultrasonography D	ion, In plications- fa rug De	mage analysis, ons – Biosenson abrication of b elivery: Nano do	Imaging rs - DNA iosensors, evices.		
Outcome - 4	Understand th their choice	Understand the concepts of nanomedicine to a focused clinical area of K2 their choice					
	·	Unit -V					
Objective	e - 5 To acquire bas	ic understanding of nanoparticles in	Cance	r Therapy			
Nanomedia Cancer wit	cine: Nanotechnology h a Focus on Nanote	v in Cancer Therapy - Passive and echnology Applications, Multifuncti	Active ional N	e Targeting Str Nanoparticles fo	ategies in or Cancer		

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	-	L(1)	L(1)	1000	L(1)	-	L(1)	L(1)	L(1)
CO2	L(1)	-	L(1)	L(1)	-	M(2)	L(1)	L(1)	L(1)	L(1)
CO3	L(1)									
CO4	L(1)	L(1)	-	L(1)	-	L(1)	-	L(1)	L(1)	L(1)
C05	L(1)	L(1)	-	L(1)	-	L(1)	L(1)	L(1)	L(1)	L(1)
W.AV	1.2	0.6	0.6	1	0.2	1.2	0.6	1	1	1

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L(1)	-	M(2)	M(2)	L(1)
CO2	L(1)	L(1)	M(2)	L(1)	L(1)
CO3	L(1)	L(1)	L(1)	L(1)	L(1)
CO4	L(1)	-	M(2)	L(1)	L(1)
CO5	M(2)	-	L(1)	L(1)	L(1)
W.AV	1.2	0.2	1.6	1.2	1

S-Strong (3), M-Medium (2), L- Low (1)

Assignment I Nanotechnology and Advanced drug delivery system

- 1. Discuss in detail the top down and Bottom up approach of synthesis of Nanomaterials.
- 2. Give an account on synthesis, properties and biomedical application of quantumdots.
- 3. Explain in detail the various spectroscopic techniques used for the characterization of metal nanoparticles with suitable example.
- 4. Elaborate in detail the sample preparation and working principle behind the characterization of nanoparticles using TEM with a neat sketch.
- 5. Describe in detail principle and instrumentation of XRD technique and its application in the characterization of metal and metal oxide nanoparticles.
- 6. Elaborate in detail the types and application of polymeric nanocarriers in targeted drug delivery.
- 7. Explain in detail about viral nanocarriers and its application.
- 8. Discuss in detail the about functionalization and pharmacological application of carbon nanotubes.
- 9. Give an account on microbial nanocarriers and its application in the treatment of cancer.
- 10. Discuss in detail the various methods of surface modification of mesoporous silica nanoparticles for cancer therapy.

Assignment II Nanotechnology and Advanced drug delivery system

- 1. Discuss in detail about physiochemical properties of drug molecule influencing the design and performance of sustained release drug delivery system.
- 2. Explain with examples biodegradable and non biodegradable polymers used for controlled drug delivery system.
- 3. Give an account of approaches and applications of implantable drug delivery systems.
- 4. Describe in detail the active and passive targeting in drug delivery.
- 5. Elaborate in detail the surface modification techniques to enhance the biocompatibility of drug.
- 6. Discuss in detail about liposomal drug delivery system in drug targeting to a specific site.
- 7. Discuss in detail the role of Quantum dots in live cell imaging and diagnostics.
- 8. Describe in detail the principle and application of DNA and Protein based biosensors.
- 9. Discuss about the theranostic application and targeted drug delivery of nanoparticle for the treatment of cancer.
- 10. Elaborate in detail the role of nanomaterials in the field of orthopedics as bone implants and for the treatment of joint injuries involving cartilage.

Immunology and Immunotechnology

Program: M.Sc Bioinformatics	Semester : (2022 Onwards)
Course Title: Core- Immunology and	Class Time: As per Time Table
Immunotechnology	
Subject Code: 502515	
Name of Course Teacher	Dr.J. Joseph Sahayarayan
Mobile:	

Course Brief:

This course provides an introduction to the basic immunological principles common to man and other vertebrate animals. It provides information related to immUNITy, development of resistance against infection, mechanisms of antigen and antibody reaction, antigen processing and presentation to macrophages cells. This course also provides basic techniques in immunology such as ELISA, RIA, immunofluorescence microscopy, immunoelectrophoresis, immunodiffusion and hybridoma technology. The laboratory component of the course is designed in such a way to strengthen the technical knowledge of the students and to physically train them with state of art technology. This course would definitely assist the students to gain more knowledge on immunotechniques.

Attendance: Attendance and participation are vital to the student's success in this course. Students are expected to attend class every day. Minimum attendance to be eligible to take end-semester-examination is 80%. It is also essential that the students study regularly.

Punctuality: Punctuality is very important in the course, because if student are late, you not only waste your time, but other student's. You will also disturb others when you go into the lecture class or laboratory after the class begins. Therefore, please arrive at the class on time. Names of late students will be recorded by mentor and marks from Course performance will be deducted. An excuse for being absent from class shall be a medical or personal emergency acceptable at the discretion of the Head of the Dept.

Class Participation: Class participation and interaction helps to form a complete educational experience. However, class participation and interaction is to be relevant to course content and context. Deviant behavior may lead to dismissal or suspension.

Submission of Assignment: Short writing assignments that address the various topics covered will be given at various times throughout the course. These writing assignments may consist of worksheets, short handwritten problems/questions, or short written assignments. The purpose of these short assignments are double they will help determine which concepts students may be having trouble with and it will help keep actively engaged in the material as we cover it.

Preparedness: Students are expected to have read and be able to discuss the assigned chapter before attending the lecture. In addition, students should be prepared to discuss homework problems.

Academic Dishonesty: Academic dishonesty includes giving, receiving, or using unconstitutional support on any academic work. This includes a person who has taken a test discussing what was on a test with a person who has not taken the test. A clear indication of academic dishonesty will result in a grade of "F" being assigned to that particular piece of work.

Subject to change clause: This syllabus, the course schedule and reading assignments are subject to change at the discretion of the Professor to accommodate instructional and/or student needs.

Assignment/Seminar- I CIA		CIA Test-I		Assignment/Seminar-			II CIA Te	Attendance						
						II								
During	the	course	of	As	per	During	the	course	of	As	per	As	per	the
hours				Calen	dar	hours				Calendar		Univ	resity	
												Norr	ns	

Course Outline: Elective-II: Immunology and Immunotechnology

- 1. Introduction and scope of immunology.
- 2. Innate and adaptive immUNITy.
- 3. Elements of immune system.
- 4. Immune response, immunoprophylaxsis.
- 5. Vaccination and immunization schedule.
- 6. Hypersensitivity, immunodeficiency diseases.
- 7. Major histocompatibility complex and immunotherapy.
- 8. Immunocytochemistry, Imunoflourescence, Immunoelectrophoresis, Immunodiffusion.
- 9. ELISA, RIA, flowcytometry, AIDS, hybridoma technolog.
- 10. Glossary.

Major Elective										
DSE	C	ourse Code: 502515	Immunology Immunotechno	and ology	Т	Credits:5	Hours: 5			
Unit - I										
Objective	e - 1	Learn the basic p	principles of defense	mechanism	ı agai	nst infections.				
Overview	of the	e Immune Syste	m: Early revealing	Humoral	and C	Cellular Compor	nents of the			
Immune Sy	stem-	Innate immUNIT	y: types of defensive	e barriers:	anator	nic, physiologic	, phagocytic			
and inflam	natory	- Adaptive Imm	JNITy: Overview of	f humoral a	and co	ell-mediated bra	nches of the			
immune sy	stem-	Cells of the Im	mune System: Her	natopoiesis	. Lyr	nphoid Cells, N	Mononuclear			
Phagocytes,	, Gra	nulocytic Cells a	nd Dendritic cells-	Organs o	f the	Immune Syste	m: Primary			
Lymphoid	Orgar	ns (Thymus, Bor	e marrow), Lymph	atic syster	n, Se	condary Lymph	oid Organs:			
Lymph nod	e, sple	een, MALT.								
Outcome - 1	Outcome - 1 Obtain knowledge on the basic concepts of immune system, mechanisms of immUNITy and the development and maturation process of immune competent cells									
			Unit – II							
Objective	e - 2	Understand the s in ImmUNITy.	structure and function	n of the mo	olecule	es, cells, and org	ans involved			
Immunogen Immunogen Site.Antigen Structure of Activities, receptors, M B-cell gene and TH2 Su	n Con n-Der f Ant Antig Monoc ration	ntributing to l Properties of B- ived Peptides for ibodies, Antibody enic Determinan lonal Antibodies , activation and d	mmunogenicity, T Cell Epitopes Detern T-Cell Epitopes. I Mediated Effector ts on Immunoglob and its applications. ifferentiation. Cytok	he Biolo nined by t Haptens ar Functions, alins, B-co Overview ines: Prop	gical he Na nd its Anti ell re of seo erties	System Con ature of the Ant Antigenicity. t body Classes ar ceptor, Overvie quential events i , Cytokine Secre	tributing to igen-Binding ibodies:Basic id Biological w of T-cell n T- cell and etion by TH1			
Outcome	- 2	Recognize the st	ructures and function	is of immu	noglo	bulin molecules	K1			
Unit – III										
Objective	e - 3	learn the mechan thesignificance	nism of <mark>h</mark> ow the imm of self/non-self-discr	nune syster mination	n reco	ognizes foreign	antigen and			
Major Histocompatibility Complex: General Organization and Inheritance of the MHC, Role of										
Antigen- Presenting Cells, Overview of cytosolic and endocytic pathways for processing antigen:										
The Cytoso	lic Pa	thway for Endoge	nous Antigens, Endo	ocytic Path	way f	or Exogenous A	ntigens. The			
Complement	nt sys	stem: Functions	of Complement,	Compleme	ent	Components, (Complement			
Activation	path	ways, Biologica	l Consequences	of Comple	ement	Activation. Co	ell-Mediated			
Effector Re	espons	ses: General Proj	perties of Effector	T Cells, C	Cytoto	xic T Cells, Na	atural Killer			
Cells, Anti	ibody	Dependent Cell	Mediated Cytotoxi	city. Infla	mmat	ion. General c	overview of			
hypersensiti	ivity a	nd its types. Imm	unologic Basis of Gr	aft Rejectio	on.					
Outcome - 3		Understand the autoimmUNITy	mechanism of immu against infection.	inodeficien	icy di	seases and	K2			

Unit – IV								
Objective - 4 Analyze how cell mediated and antibody-mediated immUNITy works to protect host from pathogenic organisms and harmful substances.								
Immune Response to Infectious Diseases: (Viral Infections- HIV, Flu and SARS-Cov-2.Bacteria								
Infections, Protozoan Diseases. Diseases Caused by Parasitic Worms (Helminths)). Overview o								
Organ-Specific and Systemic Autoimmune Diseases.								
Cancer and the Immune System: Cancer: Origin and Terminology, Malignant Transformation of								
Cells, Tumors of the Immune System, Tumor Antigens, Immune Response to Tumors, Tumo								
Evasion of the Immune System and Cancer Immunotherapy.								
Outcome - 4Realize the methods for the treatment of immune related diseasesK3								
Unit -V								
Objective - 5Understand the informatics-based approaches for prediction of epitopes, design ofvaccines and immuno-diagnostic tools.								
Vaccine: Active and Passive Immunization, Designing Vaccines for Active Immunization, Whole								
Organism Vaccines, Purified Macromolecules as Vaccines, Recombinant-Vector Vaccines, DNA								
Vaccines and Multivalent SubUNIT Vaccines. Immunoinformatics: databases and tools for Reverse								
Vaccinology: pipeline and workflow. Multi-epitope based vaccine design. B-cell epitope								
prediction algorithms using sequence-based approaches and structure-based approaches, T-cel								
epitope prediction methods, Prediction of Antigenicity, Immunogenicity, Allergenicity. in silico								
cloning of designed vaccines. Immune simulation analysis. Conformational stability analysis of the								
designed vaccines.								
Outcome - 5Understand the computational aspects of immunologyK2 & K4								
Suggested Readings:								
Kannan I., (2012) "Immunology"; MJP Publishers, 5 th Edition.								
<u>B. Annadurai</u> ., (2017) A Textbook of Immunology & Immunotechnology, S Chand & Company, ASIN: B00QUZMCI2.								
Judy Owen, Jenni Punt, Sharon Stanford (2018). Kuby Immunology. 8th Edition. WH Freemanpublication.								
Seamus J. Martin, Dennis R. Burton, Ivan M. Roitt, Peter J. Delves (2017). Roitt's Essential								
Immunology. 13th Edition. Wiley-Blackwell Publication.								
Jeffrey Actor (2014). Introductory Immunology: Basic Concepts for Interdisciplinary								
Applications, Academic Press.								
Washington, DC: Georgetown University School of Medicine.								
Day, M. J., & Schultz, R. D. (2014). Veterinary immunology: principles and practice. CRC								
Press.								
Geha, R., &Notarangelo, L. (2012). Case studies in immunology: a clinical companion.								
Garland Science. Rao, C. V. (2013). Immunology (2nd ed). New Delhi: Narosa Publishin								
Coico R & Sunshine G (2015) Immunology: a short course John Wiley & Sons								
Online Resources:								
1 https://www.regwallpark.org/gitag/default/fileg/thenewale_0_4								
1. https://www.iosweiipark.org/sites/default/files/default								
2. https://www.wiley.com/en-in/Roitt%27s+Essential+Immunology%2C+13th+Edition-i								
9781118415771								
3. https://www.mea.elsevierhealth.com/basic-immunology-9780443105197.html								
KI-Kemember K2-Understand K5-Apply K4-Analyze K5-Evaluate K6- Create								
Course designed by: Dr.J. Joseph Sahayaraya								

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L(1)									
CO2	L(1)									
CO3	L(1)									
CO4	L(1)									
CO5	L(1)									
W.AV	1	1	1	1	1	1	1	1	1	1

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

PSO1	PSO2	PSO3	PSO4	PSO5
-	-	L(1)	L(1)	L(1)
L(1)		L(1)	L(1)	L(1)
L(1)	L(1)	L(1)	L(1)	L(1)
L(1)	31-	L(1)	L(1)	L(1)
L(1)	L(1)	L(1)	L(1)	L(1)
0.8	0.4	DNIVERGITY	1	1
	PSO1 - L(1) L(1) L(1) L(1) 0.8	PSO1 PSO2 - - L(1) - L(1) L(1) L(1) L(1) L(1) - L(1) 0.1 0.8 0.4	PSO1 PSO2 PSO3 - - L(1) L(1) - L(1) L(1) L(1) L(1) L(1) L(1) L(1) L(1) L(1) L(1) L(1) - L(1) 0.8 0.4 1	PSO1 PSO2 PSO3 PSO4 - - L(1) L(1) L(1) - L(1) L(1) L(1) L(1) L(1) L(1) 0.8 0.4 1 1

S –Strong (3), M-Medium (2), L- Low (1)

Assignment I Lymphoid organs

- 1. Lymphiod organs and its types
- 2. Types of immUNITy
- 3. Immunodeficiency diseases
- 4. Major histocompatibility complex
- 5. Immunocytochemistry

Assignment II Immune system

- 1. Types and functions of antibodies
- 2. Cytotoxicity
- 3. Immunoprophylaxis
- 4. Autoimmune disorder

